Results 1  10
of
460
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1678 (43 self)
 Add to MetaCart
A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leaveoneout method and the VCdimension are given. Experimental results on optical character recognition problems demonstrate the good generalization obtained when compared with other learning algorithms.
Bayesian Interpolation
 Neural Computation
, 1991
"... Although Bayesian analysis has been in use since Laplace, the Bayesian method of modelcomparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and modelcomparison is demonstrated by studying the inference problem of interpolating noisy data. T ..."
Abstract

Cited by 664 (18 self)
 Add to MetaCart
(Show Context)
Although Bayesian analysis has been in use since Laplace, the Bayesian method of modelcomparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and modelcomparison is demonstrated by studying the inference problem of interpolating noisy data. The concepts and methods described are quite general and can be applied to many other problems. Regularising constants are set by examining their posterior probability distribution. Alternative regularisers (priors) and alternative basis sets are objectively compared by evaluating the evidence for them. `Occam's razor' is automatically embodied by this framework. The way in which Bayes infers the values of regularising constants and noise levels has an elegant interpretation in terms of the effective number of parameters determined by the data set. This framework is due to Gull and Skilling. 1 Data modelling and Occam's razor In science, a central task is to develop and compare models to a...
InformationBased Objective Functions for Active Data Selection
 Neural Computation
"... Learning can be made more efficient if we can actively select particularly salient data points. Within a Bayesian learning framework, objective functions are discussed which measure the expected informativeness of candidate measurements. Three alternative specifications of what we want to gain infor ..."
Abstract

Cited by 401 (6 self)
 Add to MetaCart
(Show Context)
Learning can be made more efficient if we can actively select particularly salient data points. Within a Bayesian learning framework, objective functions are discussed which measure the expected informativeness of candidate measurements. Three alternative specifications of what we want to gain information about lead to three different criteria for data selection. All these criteria depend on the assumption that the hypothesis space is correct, which may prove to be their main weakness. 1 Introduction Theories for data modelling often assume that the data is provided by a source that we do not control. However, there are two scenarios in which we are able to actively select training data. In the first, data measurements are relatively expensive or slow, and we want to know where to look next so as to learn as much as possible. According to Jaynes (1986), Bayesian reasoning was first applied to this problem two centuries ago by Laplace, who in consequence made more important discoveries...
Operations for Learning with Graphical Models
 Journal of Artificial Intelligence Research
, 1994
"... This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models ..."
Abstract

Cited by 264 (12 self)
 Add to MetaCart
(Show Context)
This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphical operations for simplifying and manipulating a problem are provided including decomposition, differentiation, and the manipulation of probability models from the exponential family. Two standard algorithm schemas for learning are reviewed in a graphical framework: Gibbs sampling and the expectation maximization algorithm. Using these operations and schemas, some popular algorithms can be synthesized from their graphical specification. This includes versions of linear regression, techniques for feedforward networks, and learning Gaussian and discrete Bayesian networks from data. The paper conclu...
Gaussian Processes for Regression
 Advances in Neural Information Processing Systems 8
, 1996
"... The Bayesian analysis of neural networks is difficult because a simple prior over weights implies a complex prior distribution over functions. In this paper we investigate the use of Gaussian process priors over functions, which permit the predictive Bayesian analysis for fixed values of hyperparame ..."
Abstract

Cited by 254 (21 self)
 Add to MetaCart
(Show Context)
The Bayesian analysis of neural networks is difficult because a simple prior over weights implies a complex prior distribution over functions. In this paper we investigate the use of Gaussian process priors over functions, which permit the predictive Bayesian analysis for fixed values of hyperparameters to be carried out exactly using matrix operations. Two methods, using optimization and averaging (via Hybrid Monte Carlo) over hyperparameters have been tested on a number of challenging problems and have produced excellent results.
Prediction With Gaussian Processes: From Linear Regression To Linear Prediction And Beyond
 Learning and Inference in Graphical Models
, 1997
"... The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We start from Bayesian linear regression, and show how by a change of viewpoint one can see this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. Th ..."
Abstract

Cited by 225 (4 self)
 Add to MetaCart
(Show Context)
The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We start from Bayesian linear regression, and show how by a change of viewpoint one can see this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. This leads in to a more general discussion of Gaussian processes in section 4. Section 5 deals with further issues, including hierarchical modelling and the setting of the parameters that control the Gaussian process, the covariance functions for neural network models and the use of Gaussian processes in classification problems. PREDICTION WITH GAUSSIAN PROCESSES: FROM LINEAR REGRESSION TO LINEAR PREDICTION AND BEYOND 2 1 Introduction In the last decade neural networks have been used to tackle regression and classification problems, with some notable successes. It has also been widely recognized that they form a part of a wide variety of nonlinear statistical techniques that can be used for...
Efficient BackProp
, 1998
"... . The convergence of backpropagation learning is analyzed so as to explain common phenomenon observed by practitioners. Many undesirable behaviors of backprop can be avoided with tricks that are rarely exposed in serious technical publications. This paper gives some of those tricks, and offers expl ..."
Abstract

Cited by 192 (29 self)
 Add to MetaCart
. The convergence of backpropagation learning is analyzed so as to explain common phenomenon observed by practitioners. Many undesirable behaviors of backprop can be avoided with tricks that are rarely exposed in serious technical publications. This paper gives some of those tricks, and offers explanations of why they work. Many authors have suggested that secondorder optimization methods are advantageous for neural net training. It is shown that most "classical" secondorder methods are impractical for large neural networks. A few methods are proposed that do not have these limitations. 1 Introduction Backpropagation is a very popular neural network learning algorithm because it is conceptually simple, computationally efficient, and because it often works. However, getting it to work well, and sometimes to work at all, can seem more of an art than a science. Designing and training a network using backprop requires making many seemingly arbitrary choices such as the number ...
Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables
 Machine Learning
, 1997
"... We discuss Bayesian methods for learning Bayesian networks when data sets are incomplete. In particular, we examine asymptotic approximations for the marginal likelihood of incomplete data given a Bayesian network. We consider the Laplace approximation and the less accurate but more efficient BIC/MD ..."
Abstract

Cited by 188 (12 self)
 Add to MetaCart
We discuss Bayesian methods for learning Bayesian networks when data sets are incomplete. In particular, we examine asymptotic approximations for the marginal likelihood of incomplete data given a Bayesian network. We consider the Laplace approximation and the less accurate but more efficient BIC/MDL approximation. We also consider approximations proposed by Draper (1993) and Cheeseman and Stutz (1995). These approximations are as efficient as BIC/MDL, but their accuracy has not been studied in any depth. We compare the accuracy of these approximations under the assumption that the Laplace approximation is the most accurate. In experiments using synthetic data generated from discrete naiveBayes models having a hidden root node, we find that (1) the BIC/MDL measure is the least accurate, having a bias in favor of simple models, and (2) the Draper and CS measures are the most accurate. 1
Probabilistic independence networks for hidden Markov probability models
, 1996
"... Graphical techniques for modeling the dependencies of random variables have been explored in a variety of different areas including statistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics. Formalisms for manipulating these models have been develop ..."
Abstract

Cited by 181 (12 self)
 Add to MetaCart
(Show Context)
Graphical techniques for modeling the dependencies of random variables have been explored in a variety of different areas including statistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics. Formalisms for manipulating these models have been developed relatively independently in these research communities. In this paper we explore hidden Markov models (HMMs) and related structures within the general framework of probabilistic independence networks (PINs). The paper contains a selfcontained review of the basic principles of PINs. It is shown that the wellknown forwardbackward (FB) and Viterbi algorithms for HMMs are special cases of more general inference algorithms for arbitrary PINs. Furthermore, the existence of inference and estimation algorithms for more general graphical models provides a set of analysis tools for HMM practitioners who wish to explore a richer class of HMM structures. Examples of relatively complex models to handle sensor fusion and coarticulation in speech recognition are introduced and treated within the graphical model framework to illustrate the advantages of the general approach.