Results 11  20
of
115
Logical properties of name restriction
 Proc. 5th Int. Conf. Typed Lambda Calculi and Applications (TLCA’01), volume 2044 of Lecture Notes in Computer Science
, 2001
"... Abstract. We extend the modal logic of ambients described in [7] to the full ambient calculus, including name restriction. We introduce logical operators that can be used to make assertions about restricted names, and we study their properties. 1 ..."
Abstract

Cited by 46 (6 self)
 Add to MetaCart
Abstract. We extend the modal logic of ambients described in [7] to the full ambient calculus, including name restriction. We introduce logical operators that can be used to make assertions about restricted names, and we study their properties. 1
Operational congruences for reactive systems
, 2001
"... This document consists of a slightly revised and corrected version of a dissertation ..."
Abstract

Cited by 34 (4 self)
 Add to MetaCart
This document consists of a slightly revised and corrected version of a dissertation
Manipulating Trees with Hidden Labels
 FOSSACS'03
, 2003
"... We define an operational semantics and a type system for manipulating semistructured data that contains hidden information. The data model is simple labeled trees with a hiding operator. Data manipulation is based on pattern matching, with types that track the use of hidden labels. ..."
Abstract

Cited by 31 (4 self)
 Add to MetaCart
We define an operational semantics and a type system for manipulating semistructured data that contains hidden information. The data model is simple labeled trees with a hiding operator. Data manipulation is based on pattern matching, with types that track the use of hidden labels.
Models for NamePassing Processes: Interleaving and Causal
 In Proceedings of LICS 2000: the 15th IEEE Symposium on Logic in Computer Science (Santa Barbara
, 2000
"... We study syntaxfree models for namepassing processes. For interleaving semantics, we identify the indexing structure required of an early labelled transition system to support the usual picalculus operations, defining Indexed Labelled Transition Systems. For noninterleaving causal semantics we de ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
We study syntaxfree models for namepassing processes. For interleaving semantics, we identify the indexing structure required of an early labelled transition system to support the usual picalculus operations, defining Indexed Labelled Transition Systems. For noninterleaving causal semantics we define Indexed Labelled Asynchronous Transition Systems, smoothly generalizing both our interleaving model and the standard Asynchronous Transition Systems model for CCSlike calculi. In each case we relate a denotational semantics to an operational view, for bisimulation and causal bisimulation respectively. We establish completeness properties of, and adjunctions between, categories of the two models. Alternative indexing structures and possible applications are also discussed. These are first steps towards a uniform understanding of the semantics and operations of namepassing calculi.
The ∇calculus. Functional programming with higherorder encodings
 In Proceedings of the 7th International Conference on Typed Lambda Calculi and Applications
, 2005
"... Abstract. Higherorder encodings use functions provided by one language to represent variable binders of another. They lead to concise and elegant representations, which historically have been difficult to analyze and manipulate. In this paper we present the ∇calculus, a calculus for defining gener ..."
Abstract

Cited by 23 (3 self)
 Add to MetaCart
Abstract. Higherorder encodings use functions provided by one language to represent variable binders of another. They lead to concise and elegant representations, which historically have been difficult to analyze and manipulate. In this paper we present the ∇calculus, a calculus for defining general recursive functions over higherorder encodings. To avoid problems commonly associated with using the same function space for representations and computations, we separate one from the other. The simplytyped λcalculus plays the role of the representationlevel. The computationlevel contains not only the usual computational primitives but also an embedding of the representationlevel. It distinguishes itself from similar systems by allowing recursion under representationlevel λbinders while permitting a natural style of programming which we believe scales to other logical frameworks. Sample programs include bracket abstraction, parallel reduction, and an evaluator for a simple language with firstclass continuations. 1
Focusing on binding and computation
 In IEEE Symposium on Logic in Computer Science
, 2008
"... Variable binding is a prevalent feature of the syntax and proof theory of many logical systems. In this paper, we define a programming language that provides intrinsic support for both representing and computing with binding. This language is extracted as the CurryHoward interpretation of a focused ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
Variable binding is a prevalent feature of the syntax and proof theory of many logical systems. In this paper, we define a programming language that provides intrinsic support for both representing and computing with binding. This language is extracted as the CurryHoward interpretation of a focused sequent calculus with two kinds of implication, of opposite polarity. The representational arrow extends systems of definitional reflection with a notion of scoped inference rules, which are used to represent binding. On the other hand, the usual computational arrow classifies recursive functions defined by patternmatching. Unlike many previous approaches, both kinds of implication are connectives in a single logic, which serves as a rich logical framework capable of representing inference rules that mix binding and computation. 1
A congruence rule format for namepassing process calculi from mathematical structural operational semantics
 In Proc. LICS’06
, 2006
"... We introduce a GSOSlike rule format for namepassing process calculi. Specifications in this format correspond to theories in nominal logic. The intended models of such specifications arise by initiality from a general categorical model theory. For operational semantics given in this rule format, a ..."
Abstract

Cited by 20 (5 self)
 Add to MetaCart
We introduce a GSOSlike rule format for namepassing process calculi. Specifications in this format correspond to theories in nominal logic. The intended models of such specifications arise by initiality from a general categorical model theory. For operational semantics given in this rule format, a natural behavioural equivalence — a form of open bisimilarity — is a congruence.
Programming with proofs and explicit contexts
 In Symposium on Principles and Practice of Declarative Programming, 2008. François Pottier and Nadji
"... This paper explores a new point in the design space of functional programming: functional programming with dependentlytyped higherorder data structures described in the logical framework LF. This allows us to program with proofs as higherorder data. We present a decidable bidirectional type syste ..."
Abstract

Cited by 20 (7 self)
 Add to MetaCart
This paper explores a new point in the design space of functional programming: functional programming with dependentlytyped higherorder data structures described in the logical framework LF. This allows us to program with proofs as higherorder data. We present a decidable bidirectional type system that distinguishes between dependentlytyped data and computations. To support reasoning about open data, our foundation makes contexts explicit. This provides us with a concise characterization of open data, which is crucial to elegantly describe proofs. In addition, we present an operational semantics for this language based on higherorder pattern matching for dependently typed objects. Based on this development, we prove progress and preservation.
Recursion for HigherOrder Encodings
"... This paper describes a calculus of partial recursive functions that range over arbitrary and possibly higherorder objects in LF [HHP93]. Its most novel features include recursion under lambdabinders and matching against dynamically introduced parameters. ..."
Abstract

Cited by 19 (11 self)
 Add to MetaCart
This paper describes a calculus of partial recursive functions that range over arbitrary and possibly higherorder objects in LF [HHP93]. Its most novel features include recursion under lambdabinders and matching against dynamically introduced parameters.
Nominal rewriting
 Information and Computation
"... Nominal rewriting is based on the observation that if we add support for alphaequivalence to firstorder syntax using the nominalset approach, then systems with binding, including higherorder reduction schemes such as lambdacalculus betareduction, can be smoothly represented. Nominal rewriting ma ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
Nominal rewriting is based on the observation that if we add support for alphaequivalence to firstorder syntax using the nominalset approach, then systems with binding, including higherorder reduction schemes such as lambdacalculus betareduction, can be smoothly represented. Nominal rewriting maintains a strict distinction between variables of the objectlanguage (atoms) and of the metalanguage (variables or unknowns). Atoms may be bound by a special abstraction operation, but variables cannot be bound, giving the framework a pronounced firstorder character, since substitution of terms for variables is not captureavoiding. We show how good properties of firstorder rewriting survive the extension, by giving an efficient rewriting algorithm, a critical pair lemma, and a confluence theorem