Results 1  10
of
12
Approximate Factorization of Multivariate Polynomials via Differential Equations
 Manuscript
, 2004
"... The input to our algorithm is a multivariate polynomial, whose complex rational coe#cients are considered imprecise with an unknown error that causes f to be irreducible over the complex numbers C. We seek to perturb the coe#cients by a small quantitity such that the resulting polynomial factors ove ..."
Abstract

Cited by 37 (9 self)
 Add to MetaCart
The input to our algorithm is a multivariate polynomial, whose complex rational coe#cients are considered imprecise with an unknown error that causes f to be irreducible over the complex numbers C. We seek to perturb the coe#cients by a small quantitity such that the resulting polynomial factors over C. Ideally, one would like to minimize the perturbation in some selected distance measure, but no e#cient algorithm for that is known. We give a numerical multivariate greatest common divisor algorithm and use it on a numerical variant of algorithms by W. M. Ruppert and S. Gao. Our numerical factorizer makes repeated use of singular value decompositions. We demonstrate on a significant body of experimental data that our algorithm is practical and can find factorizable polynomials within a distance that is about the same in relative magnitude as the input error, even when the relative error in the input is substantial (10 3 ).
Towards Factoring Bivariate Approximate Polynomials
"... A new algorithm is presented for factoring bivariate approximate polynomials over C [x, y]. Given a particular polynomial, the method constructs a nearby composite polynomial, if one exists, and its irreducible factors. Subject to a conjecture, the time to produce the factors is polynomial in the de ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
A new algorithm is presented for factoring bivariate approximate polynomials over C [x, y]. Given a particular polynomial, the method constructs a nearby composite polynomial, if one exists, and its irreducible factors. Subject to a conjecture, the time to produce the factors is polynomial in the degree of the problem. This method has been implemented in Maple, and has been demonstrated to be efficient and numerically robust.
On Approximate Irreducibility of Polynomials in Several Variables
"... We study the problem of bounding a polynomial away from polynomials which are absolutely irreducible. Such separation bounds are useful for testing whether a numerical polynomial is absolutely irreducible, given a certain tolerance on its coefficients. Using an absolute irreducibility criterion due ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
We study the problem of bounding a polynomial away from polynomials which are absolutely irreducible. Such separation bounds are useful for testing whether a numerical polynomial is absolutely irreducible, given a certain tolerance on its coefficients. Using an absolute irreducibility criterion due to Ruppert, we are able to find useful separation bounds, in several norms, for bivariate polynomials. We also use Ruppert's criterion to derive new, more effective Noether forms for polynomials of arbitrarily many variables. These forms lead to small separation bounds for polynomials of arbitrarily many variables.
Linear Differential Operators for Polynomial Equations
"... Given a squarefree polynomial P 2 k 0 [x; y], k 0 a number eld, we construct a linear dierential operator that allows one to calculate the genus of the complex curve dened by P = 0 (when P is absolutely irreducible), the absolute factorization of P over the algebraic closure of k 0 , and calculate i ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
Given a squarefree polynomial P 2 k 0 [x; y], k 0 a number eld, we construct a linear dierential operator that allows one to calculate the genus of the complex curve dened by P = 0 (when P is absolutely irreducible), the absolute factorization of P over the algebraic closure of k 0 , and calculate information concerning the Galois group of P over k 0 (x) as well as over k 0 (x).
Approximate Bivariate Factorization, a Geometric Viewpoint
, 2007
"... We briefly present and analyze, from a geometric viewpoint, strategies for designing algorithms to factor bivariate approximate polynomials in C[x, y]. Given a composite polynomial, stably squarefree, satisfying a genericity hypothesis, we describe the effect of a perturbation on the roots of its d ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
We briefly present and analyze, from a geometric viewpoint, strategies for designing algorithms to factor bivariate approximate polynomials in C[x, y]. Given a composite polynomial, stably squarefree, satisfying a genericity hypothesis, we describe the effect of a perturbation on the roots of its discriminant with respect to one variable, and the perturbation of the corresponding monodromy action on a smooth fiber. A novel geometric approach is presented, based on guided projection in the parameter space and continuation method above randomly chosen loops, to reconstruct from a perturbed polynomial a nearby composite polynomial and its irreducible factors. An algorithm and its ingredients are described.
ProjectTeam galaad
, 2003
"... Efficient handling of curved objects in Computational Geometry. Geometric algorithms for curves and surfaces, algebraic issues, robustness issues, approximation. ..."
Abstract
 Add to MetaCart
Efficient handling of curved objects in Computational Geometry. Geometric algorithms for curves and surfaces, algebraic issues, robustness issues, approximation.
3.2. Algebraic Geometric Modeling 2 3.3. Algebraic Geometric Computing 2
"... c t i v it y e p o r t 2009 Table of contents ..."