Results 1 
3 of
3
The natural workstealing algorithm is stable
 In Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS
, 2001
"... In this paper we analyse a very simple dynamic workstealing algorithm. In the workgeneration model, there are n (work) generators. A generatorallocation function is simply a function from the n generators to the n processors. We consider a fixed, but arbitrary, distribution D over generatoralloca ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
In this paper we analyse a very simple dynamic workstealing algorithm. In the workgeneration model, there are n (work) generators. A generatorallocation function is simply a function from the n generators to the n processors. We consider a fixed, but arbitrary, distribution D over generatorallocation functions. During each timestep of our process, a generatorallocation function h is chosen from D, and the generators are allocated to the processors according to h. Each generator may then generate a unittime task which it inserts into the queue of its host processor. It generates such a task independently with probability λ. After the new tasks are generated, each processor removes one task from its queue and services it. For many choices of D, the workgeneration model allows the load to become arbitrarily imbalanced, even when λ < 1. For example, D could be the point distribution containing a single function h which allocates all of the generators to just one processor. For this choice of D, the chosen processor receives around λn units of work at each step and services one. The natural workstealing algorithm that we analyse is widely used in practical applications and works as follows. During each time step, each empty
Allocating Weighted Jobs in Parallel
, 1997
"... It is well known that after placing m n balls independently and uniformly at random (i.u.r.) into n bins, the fullest bin contains \Theta(log n= log log n+ m n ) balls, with high probability. It is also known (see [Ste96]) that a maximum load of O \Gamma m n \Delta can be obtained for all m n ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
It is well known that after placing m n balls independently and uniformly at random (i.u.r.) into n bins, the fullest bin contains \Theta(log n= log log n+ m n ) balls, with high probability. It is also known (see [Ste96]) that a maximum load of O \Gamma m n \Delta can be obtained for all m n if a ball is allocated in one (suitably chosen) of two (i.u.r.) bins. Stemann ([Ste96]) shows that r communication rounds suffice to guarantee a maximum load of maxf r p log n; O \Gamma m n \Delta g, with high probability. Adler et al. have shown in [ACMR95] that Stemanns protocol is optimal for constant r. In this paper we extend the above results in two directions: We generalize the lower bound to arbitrary r log log n. This implies that the result of Stemanns protocol is optimal for all r. Our main result is a generalization of Stemanns upper bound to weighted jobs: Let W A (W M ) denote the average (maximum) weight of the balls. Further let \Delta = W A =W M . Note that...
Design of the PRESTO Multimedia Storage Network
, 1999
"... In this paper, we present concepts and simulation results for the design of the Paderborn realtime storage network, short PRESTO, which is currently developed at the Paderborn University in a joint project of the Electrical Engineering Department and the Computer Science Department. In this proj ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
In this paper, we present concepts and simulation results for the design of the Paderborn realtime storage network, short PRESTO, which is currently developed at the Paderborn University in a joint project of the Electrical Engineering Department and the Computer Science Department. In this project, we aim at constructing a scalable and faulttolerant storage network that manages a set of parallel disks in a resource ecient way and that can support the realtime delivery of data. We discuss in this paper the principal concepts of the PRESTO storage network, concentrating on data placement and load balancing strategies. Furthermore, we present simulation results that demonstrate that our techniques achieve a high disk utilization together with a low latency with a very high degree of reliability.