Results 1  10
of
198
Constraint Logic Programming: A Survey
"... Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in differe ..."
Abstract

Cited by 847 (24 self)
 Add to MetaCart
Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in different areas of applications. In this survey of CLP, a primary goal is to give a systematic description of the major trends in terms of common fundamental concepts. The three main parts cover the theory, implementation issues, and programming for applications.
A NEW POLYNOMIALTIME ALGORITHM FOR LINEAR PROGRAMMING
 COMBINATORICA
, 1984
"... We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract

Cited by 764 (3 self)
 Add to MetaCart
We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ellipsoid algorithm by a factor of O(n~'~). We prove that given a polytope P and a strictly interior point a E P, there is a projective transformation of the space that maps P, a to P', a ' having the following property. The ratio of the radius of the smallest sphere with center a', containing P ' to the radius of the largest sphere with center a ' contained in P ' is O(n). The algorithm consists of repeated application of such projective transformations each followed by optimization over an inscribed sphere to create a sequence of points which converges to the optimal solution in polynomial time.
The NPcompleteness column: an ongoing guide
 JOURNAL OF ALGORITHMS
, 1987
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NPCompleteness," W. H. Freem ..."
Abstract

Cited by 218 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NPCompleteness," W. H. Freeman & Co., New York, 1979 (hereinafter referred to as "[G&J]"; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
Linear programming in linear time when the dimension is fixed
 J
, 1953
"... Abstract. It is demonstrated hat he linear programming problem in d variables and n constraints can be solved in O(n) time when d is fixed. This bound follows from a multidimensional search technique which is applicable for quadratic programming aswell. There is also developed an algorithm that is p ..."
Abstract

Cited by 202 (12 self)
 Add to MetaCart
(Show Context)
Abstract. It is demonstrated hat he linear programming problem in d variables and n constraints can be solved in O(n) time when d is fixed. This bound follows from a multidimensional search technique which is applicable for quadratic programming aswell. There is also developed an algorithm that is polynomial inboth n and d provided is bounded by a certain slowly growing function of n.
Algorithms for Sequential Decision Making
, 1996
"... Sequential decision making is a fundamental task faced by any intelligent agent in an extended interaction with its environment; it is the act of answering the question "What should I do now?" In this thesis, I show how to answer this question when "now" is one of a finite set of ..."
Abstract

Cited by 202 (8 self)
 Add to MetaCart
(Show Context)
Sequential decision making is a fundamental task faced by any intelligent agent in an extended interaction with its environment; it is the act of answering the question "What should I do now?" In this thesis, I show how to answer this question when "now" is one of a finite set of states, "do" is one of a finite set of actions, "should" is maximize a longrun measure of reward, and "I" is an automated planning or learning system (agent). In particular,
A Subexponential Bound for Linear Programming
 ALGORITHMICA
, 1996
"... We present a simple randomized algorithm which solves linear programs with n constraints and d variables in expected min{O(d 2 2 d n),e 2 d ln(n / d)+O ( d+ln n)} time in the unit cost model (where we count the number of arithmetic operations on the numbers in the input); to be precise, the algorith ..."
Abstract

Cited by 173 (16 self)
 Add to MetaCart
We present a simple randomized algorithm which solves linear programs with n constraints and d variables in expected min{O(d 2 2 d n),e 2 d ln(n / d)+O ( d+ln n)} time in the unit cost model (where we count the number of arithmetic operations on the numbers in the input); to be precise, the algorithm computes the lexicographically smallest nonnegative point satisfying n given linear inequalities in d variables. The expectation is over the internal randomizations performed by the algorithm, and holds for any input. In conjunction with Clarkson’s linear programming algorithm, this gives an expected bound of O(d 2 n + e O( √ d ln d) The algorithm is presented in an abstract framework, which facilitates its application to several other related problems like computing the smallest enclosing ball (smallest volume enclosing ellipsoid) of n points in dspace, computing the distance of two nvertex (or nfacet) polytopes in dspace, and others. The subexponential running time can also be established for some of these problems (this relies on some recent results due to Gärtner).
Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time
, 2003
"... We introduce the smoothed analysis of algorithms, which continuously interpolates between the worstcase and averagecase analyses of algorithms. In smoothed analysis, we measure the maximum over inputs of the expected performance of an algorithm under small random perturbations of that input. We me ..."
Abstract

Cited by 170 (14 self)
 Add to MetaCart
We introduce the smoothed analysis of algorithms, which continuously interpolates between the worstcase and averagecase analyses of algorithms. In smoothed analysis, we measure the maximum over inputs of the expected performance of an algorithm under small random perturbations of that input. We measure this performance in terms of both the input size and the magnitude of the perturbations. We show that the simplex algorithm has smoothed complexity polynomial in the input size and the standard deviation of
On the complexity of solving Markov decision problems
 IN PROC. OF THE ELEVENTH INTERNATIONAL CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE
, 1995
"... Markov decision problems (MDPs) provide the foundations for a number of problems of interest to AI researchers studying automated planning and reinforcement learning. In this paper, we summarize results regarding the complexity of solving MDPs and the running time of MDP solution algorithms. We argu ..."
Abstract

Cited by 145 (11 self)
 Add to MetaCart
Markov decision problems (MDPs) provide the foundations for a number of problems of interest to AI researchers studying automated planning and reinforcement learning. In this paper, we summarize results regarding the complexity of solving MDPs and the running time of MDP solution algorithms. We argue that, although MDPs can be solved efficiently in theory, more study is needed to reveal practical algorithms for solving large problems quickly. To encourage future research, we sketch some alternative methods of analysis that rely on the structure of MDPs.
Las Vegas algorithms for linear and integer programming when the dimension is small
 J. ACM
, 1995
"... Abstract. This paper gives an algcmthm for solving linear programming problems. For a problem with tz constraints and d variables, the algorithm requires an expected O(d’n) + (log n)o(d)d’’+(’(’) + o(dJA log n) arithmetic operations, as rz ~ ~. The constant factors do not depend on d. Also, an algor ..."
Abstract

Cited by 109 (3 self)
 Add to MetaCart
(Show Context)
Abstract. This paper gives an algcmthm for solving linear programming problems. For a problem with tz constraints and d variables, the algorithm requires an expected O(d’n) + (log n)o(d)d’’+(’(’) + o(dJA log n) arithmetic operations, as rz ~ ~. The constant factors do not depend on d. Also, an algorlthm N gwen for integer hnear programmmg. Let p bound the number of bits required to specify the ratmnal numbers defmmg an input constraint or the ob~ective function vector. Let n and d be as before. Then, the algorithm requires expected 0(2d dn + S~dm In n) + dc)’d) ~ in H operations on numbers with O(1~p bits d ~ ~ ~z + ~, where the constant factors do not depend on d or p. The expectations are with respect to the random choices made by the algorithms, and the bounds hold for any gwen input. The techmque can be extended to other convex programming problems. For example, m algorlthm for finding the smallest sphere enclosing a set of /z points m Ed has the same t]me bound
Interior methods for nonlinear optimization
 SIAM Review
, 2002
"... Abstract. Interior methods are an omnipresent, conspicuous feature of the constrained optimization landscape today, but it was not always so. Primarily in the form of barrier methods, interiorpoint techniques were popular during the 1960s for solving nonlinearly constrained problems. However, their ..."
Abstract

Cited by 105 (5 self)
 Add to MetaCart
(Show Context)
Abstract. Interior methods are an omnipresent, conspicuous feature of the constrained optimization landscape today, but it was not always so. Primarily in the form of barrier methods, interiorpoint techniques were popular during the 1960s for solving nonlinearly constrained problems. However, their use for linear programming was not even contemplated because of the total dominance of the simplex method. Vague but continuing anxiety about barrier methods eventually led to their abandonment in favor of newly emerging, apparently more efficient alternatives such as augmented Lagrangian and sequential quadratic programming methods. By the early 1980s, barrier methods were almost without exception regarded as a closed chapter in the history of optimization. This picture changed dramatically with Karmarkar’s widely publicized announcement in 1984 of a fast polynomialtime interior method for linear programming; in 1985, a formal connection was established between his method and classical barrier methods. Since then, interior methods have advanced so far, so fast, that their influence has transformed both the theory and practice of constrained optimization. This article provides a condensed, selective look at classical material and recent research about interior methods for nonlinearly constrained optimization.