Results 11  20
of
44
Complexity results for InfiniteHorizon Markov Decision Processes
, 2000
"... Markov decision processes (MDPs) are models of dynamic decision making under uncertainty. These models arise in diverse applications and have been developed extensively in fields such as operations research, control engineering, and the decision sciences in general. Recent research, especially in a ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
Markov decision processes (MDPs) are models of dynamic decision making under uncertainty. These models arise in diverse applications and have been developed extensively in fields such as operations research, control engineering, and the decision sciences in general. Recent research, especially in artificial intelligence, has highlighted the significance of studying the computational properties of MDP problems. We address
Decompositions of Simplicial Balls and Spheres With Knots Consisting of Few Edges
, 1999
"... Constructibility is a condition on pure simplicial complexes that is weaker than shellability. In this paper we show that nonconstructible triangulations of the ddimensional sphere exist for every d 3. This answers a question of Danaraj & Klee [8]; it also strengthens a result of Lickorish [13] a ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
Constructibility is a condition on pure simplicial complexes that is weaker than shellability. In this paper we show that nonconstructible triangulations of the ddimensional sphere exist for every d 3. This answers a question of Danaraj & Klee [8]; it also strengthens a result of Lickorish [13] about nonshellable spheres. Furthermore, we provide a hierarchy of combinatorial decomposition properties that follow from the existence of a nontrivial knot with "few edges" in a 3sphere or 3ball, and a similar hierarchy for 3balls with a knotted spanning arc that consists of "few edges."
Convex Combinatorial Optimization
, 2004
"... We introduce the convex combinatorial optimization problem, a farreaching generalization of the standard linear combinatorial optimization problem. We show that it is strongly polynomial time solvable over any edgeguaranteed family, and discuss several applications. ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
We introduce the convex combinatorial optimization problem, a farreaching generalization of the standard linear combinatorial optimization problem. We show that it is strongly polynomial time solvable over any edgeguaranteed family, and discuss several applications.
Small examples of nonconstructible simplicial balls and spheres
 SIAM J. Discrete Math
, 2004
"... We construct nonconstructible simplicial dspheres with d + 10 vertices and nonconstructible, nonrealizable simplicial dballs with d + 9 vertices for d≥3. 1 ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
We construct nonconstructible simplicial dspheres with d + 10 vertices and nonconstructible, nonrealizable simplicial dballs with d + 9 vertices for d≥3. 1
A Survey on Pivot Rules for Linear Programming
 ANNALS OF OPERATIONS RESEARCH. (SUBMITTED
, 1991
"... The purpose of this paper is to survey the various pivot rules of the simplex method or its variants that have been developed in the last two decades, starting from the appearance of the minimal index rule of Bland. We are mainly concerned with the finiteness property of simplex type pivot rules. Th ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
The purpose of this paper is to survey the various pivot rules of the simplex method or its variants that have been developed in the last two decades, starting from the appearance of the minimal index rule of Bland. We are mainly concerned with the finiteness property of simplex type pivot rules. There are some other important topics in linear programming, e.g. complexity theory or implementations, that are not included in the scope of this paper. We do not discuss ellipsoid methods nor interior point methods. Well known classical results concerning the simplex method are also not particularly discussed in this survey, but the connection between the new methods and the classical ones are discussed if there is any. In this paper we discuss three classes of recently developed pivot rules for linear programming. The first class (the largest one) of the pivot rules we discuss is the class of essentially combinatorial pivot rules. Namely these rules only use labeling and signs of the variab...
Onepoint suspensions and wreath products of polytopes and spheres
"... Abstract. It is known that the suspension of a simplicial complex can be realized with only one additional point. Suitable iterations of this construction generate highly symmetric simplicial complexes with various interesting combinatorial and topological properties. In particular, infinitely many ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
Abstract. It is known that the suspension of a simplicial complex can be realized with only one additional point. Suitable iterations of this construction generate highly symmetric simplicial complexes with various interesting combinatorial and topological properties. In particular, infinitely many nonPL spheres as well as contractible simplicial complexes with a vertextransitive group of automorphisms can be obtained in this way. 1.
Polytope Skeletons And Paths
 Handbook of Discrete and Computational Geometry (Second Edition ), chapter 20
"... INTRODUCTION The kdimensional skeleton of a dpolytope P is the set of all faces of the polytope of dimension at most k. The 1skeleton of P is called the graph of P and denoted by G(P ). G(P ) can be regarded as an abstract graph whose vertices are the vertices of P , with two vertices adjacent i ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
INTRODUCTION The kdimensional skeleton of a dpolytope P is the set of all faces of the polytope of dimension at most k. The 1skeleton of P is called the graph of P and denoted by G(P ). G(P ) can be regarded as an abstract graph whose vertices are the vertices of P , with two vertices adjacent if they form the endpoints of an edge of P . In this chapter, we will describe results and problems concerning graphs and skeletons of polytopes. In Section 17.1 we briefly describe the situation for 3polytopes. In Section 17.2 we consider general properties of polytopal graphs subgraphs and induced subgraphs, connectivity and separation, expansion, and other properties. In Section 17.3 we discuss problems related to diameters of polytopal graphs in connection with the simplex algorithm and t
The Simplex Algorithm in Dimension Three
, 2004
"... We investigate the worstcase behavior of the simplex algorithm on linear programs with three variables, that is, on 3dimensional simple polytopes. Among the pivot rules that we consider, the “random edge” rule yields the best asymptotic behavior as well as the most complicated analysis. All other ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
We investigate the worstcase behavior of the simplex algorithm on linear programs with three variables, that is, on 3dimensional simple polytopes. Among the pivot rules that we consider, the “random edge” rule yields the best asymptotic behavior as well as the most complicated analysis. All other rules turn out to be much easier to study, but also produce worse results: Most of them show essentially worstpossible behavior; this includes both Kalai’s “randomfacet” rule, which without dimension restriction is known to be subexponential, as well as Zadeh’s deterministic historydependent rule, for which no nonpolynomial instances in general dimensions have been found so far.