Results 1  10
of
49
Hellytype theorems and generalized linear programming
 DISCRETE COMPUT. GEOM
, 1994
"... This thesis establishes a connection between the Helly theorems, a collection of results from combinatorial geometry, and the class of problems which we call Generalized Linear Programming, or GLP, which can be solved by combinatorial linear programming algorithms like the simplex method. We use the ..."
Abstract

Cited by 60 (0 self)
 Add to MetaCart
(Show Context)
This thesis establishes a connection between the Helly theorems, a collection of results from combinatorial geometry, and the class of problems which we call Generalized Linear Programming, or GLP, which can be solved by combinatorial linear programming algorithms like the simplex method. We use these results to explore the class GLP and show new applications to geometric optimization, and also to prove Helly theorems. In general, a GLP is a set...
A quasipolynomial bound for the diameter of graphs of polyhedra
 Bulletin Amer. Math. Soc
, 1992
"... ..."
(Show Context)
A subexponential algorithm for abstract optimization problems
 SIAM J. Comput
, 1995
"... An Abstract Optimization Problem (AOP) is a triple (H, <, Φ) where H is a finite set, < a total order on 2 H and Φ an oracle that, for given F ⊆ G ⊆ H, either reports that F = min<{F ′  F ′ ⊆ G} or returns a set F ′ ⊆ G with F ′ < F. To solve the problem means to find the minimum set ..."
Abstract

Cited by 47 (4 self)
 Add to MetaCart
(Show Context)
An Abstract Optimization Problem (AOP) is a triple (H, <, Φ) where H is a finite set, < a total order on 2 H and Φ an oracle that, for given F ⊆ G ⊆ H, either reports that F = min<{F ′  F ′ ⊆ G} or returns a set F ′ ⊆ G with F ′ < F. To solve the problem means to find the minimum set in H. We present a randomized algorithm that solves any AOP with an expected number of at most e 2 √ n+O ( 4 √ n ln n) oracle calls, n = H. In contrast, any deterministic algorithm needs to make 2 n − 1 oracle calls in the worst case. The algorithm is applied to the problem of finding the distance between two nvertex (or nfacet) convex polyhedra in dspace, and to the computation of the smallest ball containing n points in dspace; for both problems we give the first subexponential bounds in the arithmetic model of computation.
Exponentially Many Steps for Finding a Nash Equilibrium in a Bimatrix Game
 IN PROCEEDINGS OF THE ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS
, 2004
"... The LemkeHowson algorithm is the classical algorithm for the problem NASH of finding one Nash equilibrium of a bimatrix game. It provides a constructive, elementary proof of existence of an equilibrium, by a typical "directed parity argument", which puts NASH into the complexity class PPA ..."
Abstract

Cited by 45 (1 self)
 Add to MetaCart
(Show Context)
The LemkeHowson algorithm is the classical algorithm for the problem NASH of finding one Nash equilibrium of a bimatrix game. It provides a constructive, elementary proof of existence of an equilibrium, by a typical "directed parity argument", which puts NASH into the complexity class PPAD. This paper presents a class of bimatrix games for which the LemkeHowson algorithm takes, even in the best case, exponential time in the dimension d of the game, requiring #((# 3=4 ) d ) many steps, where # is the Golden Ratio. The "parity argument" for NASH is thus explicitly shown to be inefficient. The games are constructed using pairs of dual cyclic polytopes with 2d suitably labeled facets in dspace.
Hardtosolve bimatrix games
 ECONOMETRICA
, 2006
"... The Lemke–Howson algorithm is the classical method for finding one Nash equilibrium of a bimatrix game. This paper presents a class of square bimatrix games for which this algorithm takes, even in the best case, an exponential number of steps in the dimension d of the game. Using polytope theory, th ..."
Abstract

Cited by 22 (1 self)
 Add to MetaCart
The Lemke–Howson algorithm is the classical method for finding one Nash equilibrium of a bimatrix game. This paper presents a class of square bimatrix games for which this algorithm takes, even in the best case, an exponential number of steps in the dimension d of the game. Using polytope theory, the games are constructed using pairs of dual cyclic polytopes with 2d suitably labeled facets in dspace. The construction is extended to nonsquare games where, in addition to exponentially long Lemke–Howson computations, finding an equilibrium by support enumeration takes on average exponential time.
More polytopes meeting the conjectured Hirsch bound
 Discrete Math
, 1999
"... In 1957 W.M. Hirsch conjectured that every dpolytope with n facets has edgediameter at most n \Gamma d. Recently Holt and Klee constructed polytopes which meet this bound for a number of (d; n) pairs with d 13 and for all pairs (14; n). These constructions involve a judicious use of truncation, w ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
In 1957 W.M. Hirsch conjectured that every dpolytope with n facets has edgediameter at most n \Gamma d. Recently Holt and Klee constructed polytopes which meet this bound for a number of (d; n) pairs with d 13 and for all pairs (14; n). These constructions involve a judicious use of truncation, wedging, and blending on polytopes which already meet the Hirsch bound. In this paper we extend these techniques to construct polytopes of edgediameter n \Gamma 8 for all (8; n). The improvement from d = 14 to d = 8 follows from identifying circumstances in which the results for wedging when n ? 2d can be extended to the cases n 2d, our lemma 2.2. 1 Introduction For two vertices x and y of a polytope P , the distance ffi P (x; y) is defined as the smallest number of edges of P that can be used to form a path from x to y. The edgediameter ffi(P ) of P is the maximum over all pairs (x; y) of P 's vertices. An undirected edge [u; v] in a polytope P is said to be slow toward a vertex x of P...
Randomized Simplex Algorithms on KleeMinty Cubes
 COMBINATORICA
, 1994
"... We investigate the behavior of randomized simplex algorithms on special linear programs. For this, we use combinatorial models for the KleeMinty cubes [22] and similar linear programs with exponential decreasing paths. The analysis of two most natural randomized pivot rules on the KleeMinty cubes ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
(Show Context)
We investigate the behavior of randomized simplex algorithms on special linear programs. For this, we use combinatorial models for the KleeMinty cubes [22] and similar linear programs with exponential decreasing paths. The analysis of two most natural randomized pivot rules on the KleeMinty cubes leads to (nearly) quadratic lower bounds for the complexity of linear programming with random pivots. Thus we disprove two bounds (for the expected running time of the randomedge simplex algorithm on KleeMinty cubes) conjectured in the literature. At the same time, we establish quadratic upper bounds for the expected length of a path for a simplex algorithm with random pivots on the classes of linear programs under investigation. In contrast to this, we find that the average length of an increasing path in a KleeMinty cube is exponential when all paths are taken with equal probability.
CrissCross Methods: A Fresh View on Pivot Algorithms
 Mathematical Programming
, 1997
"... this paper is to present mathematical ideas and ..."