Results 1 
4 of
4
Dealing with label switching in mixture models
 Journal of the Royal Statistical Society, Series B
, 2000
"... In a Bayesian analysis of finite mixture models, parameter estimation and clustering are sometimes less straightforward that might be expected. In particular, the common practice of estimating parameters by their posterior mean, and summarising joint posterior distributions by marginal distributions ..."
Abstract

Cited by 112 (0 self)
 Add to MetaCart
In a Bayesian analysis of finite mixture models, parameter estimation and clustering are sometimes less straightforward that might be expected. In particular, the common practice of estimating parameters by their posterior mean, and summarising joint posterior distributions by marginal distributions, often leads to nonsensical answers. This is due to the socalled “labelswitching” problem, which is caused by symmetry in the likelihood of the model parameters. A frequent response to this problem is to remove the symmetry using artificial identifiability constraints. We demonstrate that this fails in general to solve the problem, and describe an alternative class of approaches, relabelling algorithms, which arise from attempting to minimise the posterior expected loss under a class of loss functions. We describe in detail one particularly simple and general relabelling algorithm, and illustrate its success in dealing with the labelswitching problem on two examples.
Easy Computation of Bayes Factors and Normalizing Constants for Mixture Models via Mixture Importance Sampling
, 2001
"... We propose a method for approximating integrated likelihoods, or posterior normalizing constants, in finite mixture models, for which analytic approximations such as the Laplace method are invalid. Integrated likelihoods are key components of Bayes factors and of the posterior model probabilities us ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
We propose a method for approximating integrated likelihoods, or posterior normalizing constants, in finite mixture models, for which analytic approximations such as the Laplace method are invalid. Integrated likelihoods are key components of Bayes factors and of the posterior model probabilities used in Bayesian model averaging. The method starts by formulating the model in terms of the unobserved group memberships, Z, and making these, rather than the model parameters, the variables of integration. The integral is then evaluated using importance sampling over the Z. The tricky part is choosing the importance sampling function, and we study the use of mixtures as importance sampling functions. We propose two forms of this: defensive mixture importance sampling (DMIS), and Zdistance importance sampling. We choose the parameters of the mixture adaptively, and we show how this can be done so as to approximately minimize the variance of the approximation to the integral.
Easy Computatioll of Bayes Factors arid Normalizing Constants for Mixture Models via Mixture Importance Sampling
, 2001
"... vVe propose a method for approximating integrated likelihoods, or posterior normalizing constants, in finite mixture models, for which analytic approximations such as the Laplace method are invalid. Integrated likelihoods are key components of Bayes factors and of the posterior model probabilities u ..."
Abstract
 Add to MetaCart
vVe propose a method for approximating integrated likelihoods, or posterior normalizing constants, in finite mixture models, for which analytic approximations such as the Laplace method are invalid. Integrated likelihoods are key components of Bayes factors and of the posterior model probabilities used in Bayesian model averaging. The method starts by formulating the model in terms of the unobserved group memberships, Z, and making these, rather than the model parameters, the variables of integration. The integral is then evaluated using importance sampling over the Z. The tricky part is choosing the importance sampling function, and we study the use of mixtures as importance sampling functions. vVe propose two forms of this: defensive mixture importance sampling (DMIS), and Zdistance importance sampling. We choose the parameters of the mixture adaptively, and we show how this can be done so as to approximately minimize the variance of the approximation to the integral. The resulting method is easy to implement, involving only simple multinomial sampling, it is almost as easy for complex mixture models as for simple ones, and it extends easily