Results 1 
4 of
4
Large Character Sums
 CHARACTERS AND THE POLYAVINOGRADOV THEOREM 29
"... A central problem in analytic number theory is to gain an understanding of character sums χ(n), n≤x ..."
Abstract

Cited by 15 (6 self)
 Add to MetaCart
A central problem in analytic number theory is to gain an understanding of character sums χ(n), n≤x
Arbitrarily Tight Bounds On The Distribution Of Smooth Integers
 Proceedings of the Millennial Conference on Number Theory
, 2002
"... This paper presents lower bounds and upper bounds on the distribution of smooth integers; builds an algebraic framework for the bounds; shows how the bounds can be computed at extremely high speed using FFTbased powerseries exponentiation; explains how one can choose the parameters to achieve ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
This paper presents lower bounds and upper bounds on the distribution of smooth integers; builds an algebraic framework for the bounds; shows how the bounds can be computed at extremely high speed using FFTbased powerseries exponentiation; explains how one can choose the parameters to achieve any desired level of accuracy; and discusses several generalizations.
On modular signs
"... Abstract. We consider some questions related to the signs of Hecke eigenvalues or Fourier coefficients of classical modular forms. One problem is to determine to what extent those signs, for suitable sets of primes, determine uniquely the modular form, and we give both individual and statistical res ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Abstract. We consider some questions related to the signs of Hecke eigenvalues or Fourier coefficients of classical modular forms. One problem is to determine to what extent those signs, for suitable sets of primes, determine uniquely the modular form, and we give both individual and statistical results. The second problem, which has been considered by a number of authors, is to determine the size, in terms of the conductor and weight, of the first signchange of Hecke eigenvalues. Here we improve the recent estimate of Iwaniec, Kohnen and Sengupta. 1.