Results 1 
2 of
2
Discrete Logarithms in Finite Fields and Their Cryptographic Significance
, 1984
"... Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its appl ..."
Abstract

Cited by 98 (7 self)
 Add to MetaCart
Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its applicability in cryptography. Several cryptographic systems would become insecure if an efficient discrete logarithm algorithm were discovered. This paper surveys and analyzes known algorithms in this area, with special attention devoted to algorithms for the fields GF(2 n ). It appears that in order to be safe from attacks using these algorithms, the value of n for which GF(2 n ) is used in a cryptosystem has to be very large and carefully chosen. Due in large part to recent discoveries, discrete logarithms in fields GF(2 n ) are much easier to compute than in fields GF(p) with p prime. Hence the fields GF(2 n ) ought to be avoided in all cryptographic applications. On the other hand, ...
Arbitrarily Tight Bounds On The Distribution Of Smooth Integers
 Proceedings of the Millennial Conference on Number Theory
, 2002
"... This paper presents lower bounds and upper bounds on the distribution of smooth integers; builds an algebraic framework for the bounds; shows how the bounds can be computed at extremely high speed using FFTbased powerseries exponentiation; explains how one can choose the parameters to achieve ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
(Show Context)
This paper presents lower bounds and upper bounds on the distribution of smooth integers; builds an algebraic framework for the bounds; shows how the bounds can be computed at extremely high speed using FFTbased powerseries exponentiation; explains how one can choose the parameters to achieve any desired level of accuracy; and discusses several generalizations.