Results 1 
4 of
4
Integers, without large prime factors, in arithmetic progressions, II
"... : We show that, for any fixed " ? 0, there are asymptotically the same number of integers up to x, that are composed only of primes y, in each arithmetic progression (mod q), provided that y q 1+" and log x=log q ! 1 as y ! 1: this improves on previous estimates. y An Alfred P. Sloan Research Fe ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
: We show that, for any fixed " ? 0, there are asymptotically the same number of integers up to x, that are composed only of primes y, in each arithmetic progression (mod q), provided that y q 1+" and log x=log q ! 1 as y ! 1: this improves on previous estimates. y An Alfred P. Sloan Research Fellow. Supported, in part, by the National Science Foundation Integers, without large prime factors, in arithmetic progressions, II Andrew Granville 1. Introduction. The study of the distribution of integers with only small prime factors arises naturally in many areas of number theory; for example, in the study of large gaps between prime numbers, of values of character sums, of Fermat's Last Theorem, of the multiplicative group of integers modulo m, of Sunit equations, of Waring's problem, and of primality testing and factoring algorithms. For over sixty years this subject has received quite a lot of attention from analytic number theorists and we have recently begun to attain a very pre...
Arbitrarily Tight Bounds On The Distribution Of Smooth Integers
 Proceedings of the Millennial Conference on Number Theory
, 2002
"... This paper presents lower bounds and upper bounds on the distribution of smooth integers; builds an algebraic framework for the bounds; shows how the bounds can be computed at extremely high speed using FFTbased powerseries exponentiation; explains how one can choose the parameters to achieve ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
This paper presents lower bounds and upper bounds on the distribution of smooth integers; builds an algebraic framework for the bounds; shows how the bounds can be computed at extremely high speed using FFTbased powerseries exponentiation; explains how one can choose the parameters to achieve any desired level of accuracy; and discusses several generalizations.
Lower bounds for the number of smooth values of a polynomial
, 1998
"... We investigate the problem of showing that the values of a given polynomial are smooth (i.e., have no large prime factors) a positive proportion of the time. Although some results exist that bound the number of smooth values of a polynomial from above, a corresponding lower bound of the correct ord ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
We investigate the problem of showing that the values of a given polynomial are smooth (i.e., have no large prime factors) a positive proportion of the time. Although some results exist that bound the number of smooth values of a polynomial from above, a corresponding lower bound of the correct order of magnitude has hitherto been established only in a few special cases. The purpose of this paper is to provide such a lower bound for an arbitrary polynomial. Various generalizations to subsets of the set of values taken by a polynomial are also obtained.
Divisibility, Smoothness and Cryptographic Applications
, 2008
"... This paper deals with products of moderatesize primes, familiarly known as smooth numbers. Smooth numbers play an crucial role in information theory, signal processing and cryptography. We present various properties of smooth numbers relating to their enumeration, distribution and occurrence in var ..."
Abstract
 Add to MetaCart
This paper deals with products of moderatesize primes, familiarly known as smooth numbers. Smooth numbers play an crucial role in information theory, signal processing and cryptography. We present various properties of smooth numbers relating to their enumeration, distribution and occurrence in various integer sequences. We then turn our attention to cryptographic applications in which smooth numbers play a pivotal role. 1 1