Results 1  10
of
66
The JumpRisk Premia Implicit in Options: Evidence from an Integrated TimeSeries Study
 Journal of Financial Economics
"... Abstract: This paper examines the joint time series of the S&P 500 index and nearthemoney shortdated option prices with an arbitragefree model, capturing both stochastic volatility and jumps. Jumprisk premia uncovered from the joint data respond quickly to market volatility, becoming more promi ..."
Abstract

Cited by 210 (1 self)
 Add to MetaCart
Abstract: This paper examines the joint time series of the S&P 500 index and nearthemoney shortdated option prices with an arbitragefree model, capturing both stochastic volatility and jumps. Jumprisk premia uncovered from the joint data respond quickly to market volatility, becoming more prominent during volatile markets. This form of jumprisk premia is important not only in reconciling the dynamics implied by the joint data, but also in explaining the volatility “smirks” of crosssectional options data.
The Distribution of Realized Exchange Rate Volatility
 Journal of the American Statistical Association
, 2001
"... Using highfrequency data on deutschemark and yen returns against the dollar, we construct modelfree estimates of daily exchange rate volatility and correlation that cover an entire decade. Our estimates, termed realized volatilities and correlations, are not only modelfree, but also approximately ..."
Abstract

Cited by 150 (17 self)
 Add to MetaCart
Using highfrequency data on deutschemark and yen returns against the dollar, we construct modelfree estimates of daily exchange rate volatility and correlation that cover an entire decade. Our estimates, termed realized volatilities and correlations, are not only modelfree, but also approximately free of measurement error under general conditions, which we discuss in detail. Hence, for practical purposes, we may treat the exchange rate volatilities and correlations as observed rather than latent. We do so, and we characterize their joint distribution, both unconditionally and conditionally. Noteworthy results include a simple normalityinducing volatility transformation, high contemporaneous correlation across volatilities, high correlation between correlation and volatilities, pronounced and persistent dynamics in volatilities and correlations, evidence of longmemory dynamics in volatilities and correlations, and remarkably precise scaling laws under temporal aggregation.
Rangebased estimation of stochastic volatility models
, 2002
"... We propose using the price range in the estimation of stochastic volatility models. We show theoretically, numerically, and empirically that rangebased volatility proxies are not only highly efficient, but also approximately Gaussian and robust to microstructure noise. Hence rangebased Gaussian qu ..."
Abstract

Cited by 114 (11 self)
 Add to MetaCart
We propose using the price range in the estimation of stochastic volatility models. We show theoretically, numerically, and empirically that rangebased volatility proxies are not only highly efficient, but also approximately Gaussian and robust to microstructure noise. Hence rangebased Gaussian quasimaximum likelihood estimation produces highly efficient estimates of stochastic volatility models and extractions of latent volatility. We use our method to examine the dynamics of daily exchange rate volatility and find the evidence points strongly toward twofactor models with one highly persistent factor and one quickly meanreverting factor. VOLATILITY IS A CENTRAL CONCEPT in finance, whether in asset pricing, portfolio choice, or risk management. Not long ago, theoretical models routinely assumed constant volatility ~e.g., Merton ~1969!, Black and Scholes ~1973!!. Today, however, we widely acknowledge that volatility is both time varying and predictable ~e.g., Andersen and Bollerslev ~1997!!, andstochastic volatility models are commonplace. Discrete and continuoustime stochastic volatility models are extensively used in theoretical finance, empirical finance, and financial econometrics, both in academe and industry ~e.g., Hull and
Do stock prices and volatility jump? Reconciling evidence from spot and option prices
, 2001
"... This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation ..."
Abstract

Cited by 97 (2 self)
 Add to MetaCart
This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation period. This contrasts previous findings where stochastic volatility paths are found to be too smooth relative to the option implied dynamics. While the models perform well during the high volatility estimation period, they tend to overprice long dated contracts outofsample. This evidence points towards a too simplistic specification of the mean dynamics of volatility.
The CrossSection of Volatility and Expected Returns
 Journal of Finance
, 2006
"... We especially thank an anonymous referee and Rob Stambaugh, the editor, for helpful suggestions that greatly improved the article. Andrew Ang and Bob Hodrick both acknowledge support from the NSF. ..."
Abstract

Cited by 82 (6 self)
 Add to MetaCart
We especially thank an anonymous referee and Rob Stambaugh, the editor, for helpful suggestions that greatly improved the article. Andrew Ang and Bob Hodrick both acknowledge support from the NSF.
A selective overview of nonparametric methods in financial econometrics
 Statist. Sci
, 2005
"... Abstract. This paper gives a brief overview of the nonparametric techniques that are useful for financial econometric problems. The problems include estimation and inference for instantaneous returns and volatility functions of timehomogeneous and timedependent diffusion processes, and estimation ..."
Abstract

Cited by 35 (8 self)
 Add to MetaCart
Abstract. This paper gives a brief overview of the nonparametric techniques that are useful for financial econometric problems. The problems include estimation and inference for instantaneous returns and volatility functions of timehomogeneous and timedependent diffusion processes, and estimation of transition densities and state price densities. We first briefly describe the problems and then outline the main techniques and main results. Some useful probabilistic aspects of diffusion processes are also briefly summarized to facilitate our presentation and applications.
Dynamic Derivative Strategies
, 2003
"... We study optimal investment strategies given investor access not only to bond and stock markets but also to the derivatives market. The problem is solved in closed form. Derivatives extend the risk and return tradeoffs associated with stochastic volatility and price jumps. As a means of exposure to ..."
Abstract

Cited by 33 (5 self)
 Add to MetaCart
We study optimal investment strategies given investor access not only to bond and stock markets but also to the derivatives market. The problem is solved in closed form. Derivatives extend the risk and return tradeoffs associated with stochastic volatility and price jumps. As a means of exposure to volatility risk, derivatives enable nonmyopic investors to exploit the timevarying opportunity set; and as a means of exposure to jump risk, they enable investors to disentangle the simultaneous exposure to diffusive and jump risks in the stock market. Calibrating to the S&P 500 index and options markets, we find sizable portfolio improvement from derivatives investing.
A Gaussian calculus for inference from high frequency data
, 2006
"... In the econometric literature of high frequency data, it is often assumed that one can carry out inference conditionally on the underlying volatility processes. In other words, conditionally Gaussian systems are considered. This is often referred to as the assumption of “no leverage effect”. This is ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
In the econometric literature of high frequency data, it is often assumed that one can carry out inference conditionally on the underlying volatility processes. In other words, conditionally Gaussian systems are considered. This is often referred to as the assumption of “no leverage effect”. This is often a reasonable thing to do, as general estimators and results can often be conjectured from considering the conditionally Gaussian case. The purpose of this paper is to try to give some more structure to the things one can do with the Gaussian assumption. We shall argue in the following that there is a whole treasure chest of tools that can be brought to bear on high frequency data problems in this case. We shall in particular consider approximations involving locally constant volatility processes, and develop a general theory for this approximation. As applications of the theory, we propose an improved estimator of quarticity, an ANOVA for processes with multiple regressors, and an estimator for error bars on the HayashiYoshida estimator of quadratic covariation Some key words and phrases: consistency, cumulants, contiguity, continuity, discrete observation, efficiency, Itô process, likelihood inference, realized volatility, stable convergence
Stochastic Volatility
, 2005
"... Stochastic volatility (SV) is the main concept used in the fields of financial economics and mathematical finance to deal with the endemic timevarying volatility and codependence found in financial markets. Such dependence has been known for a long time, early comments include Mandelbrot (1963) and ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
Stochastic volatility (SV) is the main concept used in the fields of financial economics and mathematical finance to deal with the endemic timevarying volatility and codependence found in financial markets. Such dependence has been known for a long time, early comments include Mandelbrot (1963) and Officer (1973). It was also clear to the founding fathers of modern continuous time finance that homogeneity was an unrealistic if convenient simplification, e.g. Black and Scholes (1972, p. 416) wrote “... there is evidence of nonstationarity in the variance. More work must be done to predict variances using the information available. ” Heterogeneity has deep implications for the theory and practice of financial economics and econometrics. In particular, asset pricing theory is dominated by the idea that higher rewards may be expected when we face higher risks, but these risks change through time in complicated ways. Some of the changes in the level of risk can be modelled stochastically, where the level of volatility and degree of codependence between assets is allowed to change over time. Such models allow us to explain, for example, empirically observed departures from BlackScholesMerton prices for options and understand why we should expect to see occasional dramatic moves in financial markets. The outline of this article is as follows. In section 2 I will trace the origins of SV and provide links with the basic models used today in the literature. In section 3 I will briefly discuss some of the innovations in the second generation of SV models. In section 4 I will briefly discuss the literature on conducting inference for SV models. In section 5 I will talk about the use of SV to price options. In section 6 I will consider the connection of SV with realised volatility. A extensive reviews of this literature is given in Shephard (2005). 2 The origin of SV models The origins of SV are messy, I will give five accounts, which attribute the subject to different sets of people.