Results 1  10
of
12
Codable Sets and Orbits of Computably Enumerable Sets
 J. Symbolic Logic
, 1995
"... A set X of nonnegative integers is computably enumerable (c.e.), also called recursively enumerable (r.e.), if there is a computable method to list its elements. Let E denote the structure of the computably enumerable sets under inclusion, E = (fW e g e2! ; `). We previously exhibited a first order ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
A set X of nonnegative integers is computably enumerable (c.e.), also called recursively enumerable (r.e.), if there is a computable method to list its elements. Let E denote the structure of the computably enumerable sets under inclusion, E = (fW e g e2! ; `). We previously exhibited a first order Edefinable property Q(X) such that Q(X) guarantees that X is not Turing complete (i.e., does not code complete information about c.e. sets). Here we show first that Q(X) implies that X has a certain "slowness " property whereby the elements must enter X slowly (under a certain precise complexity measure of speed of computation) even though X may have high information content. Second we prove that every X with this slowness property is computable in some member of any nontrivial orbit, namely for any noncomputable A 2 E there exists B in the orbit of A such that X T B under relative Turing computability ( T ). We produce B using the \Delta 0 3 automorphism method we introduced earli...
On the definability of the double jump in the computably enumerable sets
 J. MATH. LOG
, 2002
"... We show that the double jump is definable in the computably enumerable sets. Our main result is as follows: Let C = {a: a is the Turing degree of a � 0 3 set J ≥T 0 ′ ′}. Let D ⊆ C such that D is upward closed in C. Then there is an L(A) property ϕD(A) such that F ′ ′ ∈ D iff there is an A where A ..."
Abstract

Cited by 9 (5 self)
 Add to MetaCart
We show that the double jump is definable in the computably enumerable sets. Our main result is as follows: Let C = {a: a is the Turing degree of a � 0 3 set J ≥T 0 ′ ′}. Let D ⊆ C such that D is upward closed in C. Then there is an L(A) property ϕD(A) such that F ′ ′ ∈ D iff there is an A where A ≡T F and ϕD(A). A corollary of this is that, for all n ≥ 2, the highn (lown) computably enumerable degrees are invariant in the computably enumerable sets. Our work resolves Martin’s Invariance Conjecture.
1995], Degree theoretic definitions of the low 2 recursively enumerable sets
 J. Symbolic Logic
, 1995
"... 1. Introduction. The primary relation studied in recursion theory is that of relative complexity: A set or function A (of natural numbers) is reducible to one B if, given access to information about B, we can compute A. The primary reducibility is that of Turing, A ≤T B, where arbitrary (Turing) mac ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
1. Introduction. The primary relation studied in recursion theory is that of relative complexity: A set or function A (of natural numbers) is reducible to one B if, given access to information about B, we can compute A. The primary reducibility is that of Turing, A ≤T B, where arbitrary (Turing) machines, ϕe, can be used; access to
Highness and Bounding Minimal Pairs
, 1993
"... We show the existence of a high r.e. degree bounding only joins of minimal pairs and of a high 2 nonbounding r.e. degree. 0 Introduction An important topic in the study of recursively enumerable sets and degrees has been the interaction between the jump operator and the order theoretic properties o ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
We show the existence of a high r.e. degree bounding only joins of minimal pairs and of a high 2 nonbounding r.e. degree. 0 Introduction An important topic in the study of recursively enumerable sets and degrees has been the interaction between the jump operator and the order theoretic properties of an r. e. set A (in the lattice E of all r. e. sets) and of its degree a in R, the upper semilattice of the r. e. degrees. An early theme in this area was the idea that sets with "low" jumps should behave like the recursive sets while those with "high" jumps should exhibit properties like the complete sets. For example, in the lattice E of r. e. sets modulo finite sets, we know from Soare[23] that if A is low, i. e. A 0 j T ; 0 , then L (A), the lattice of r. e. supersets of A, is isomorphic to E . In R there are many instances of the low Partially supported by IGC of Vicoria University, Wellington and ARO through MSI, Cornell University, DAAL03C0027. y Partailly suppo...
An Overview of the Computably Enumerable Sets
"... The purpose of this article is to summarize some of the results on the algebraic structure of the computably enumerable (c.e.) sets since 1987 when the subject was covered in Soare 1987 , particularly Chapters X, XI, and XV. We study the c.e. sets as a partial ordering under inclusion, (E; `). We do ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The purpose of this article is to summarize some of the results on the algebraic structure of the computably enumerable (c.e.) sets since 1987 when the subject was covered in Soare 1987 , particularly Chapters X, XI, and XV. We study the c.e. sets as a partial ordering under inclusion, (E; `). We do not study the partial ordering of the c.e. degrees under Turing reducibility, although a number of the results here relate the algebraic structure of a c.e. set A to its (Turing) degree in the sense of the information content of A. We consider here various properties of E: (1) deønable properties; (2) automorphisms; (3) invariant properties; (4) decidability and undecidability results; miscellaneous results. This is not intended to be a comprehensive survey of all results in the subject since 1987, but we give a number of references in the bibliography to other results.
Dynamic Properties of Computably Enumerable Sets
 In Computability, Enumerability, Unsolvability, volume 224 of London Math. Soc. Lecture Note Ser
, 1995
"... A set A ` ! is computably enumerable (c.e.), also called recursively enumerable, (r.e.), or simply enumerable, if there is a computable algorithm to list its members. Let E denote the structure of the c.e. sets under inclusion. Starting with Post [1944] there has been much interest in relating t ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
A set A ` ! is computably enumerable (c.e.), also called recursively enumerable, (r.e.), or simply enumerable, if there is a computable algorithm to list its members. Let E denote the structure of the c.e. sets under inclusion. Starting with Post [1944] there has been much interest in relating the denable (especially Edenable) properties of a c.e. set A to its iinformation contentj, namely its Turing degree, deg(A), under T , the usual Turing reducibility. [Turing 1939]. Recently, Harrington and Soare answered a question arising from Post's program by constructing a nonemptly Edenable property Q(A) which guarantees that A is incomplete (A !T K). The property Q(A) is of the form (9C)[A ae m C & Q \Gamma (A; C)], where A ae m C abbreviates that iA is a major subset of Cj, and Q \Gamma (A; C) contains the main ingredient for incompleteness. A dynamic property P (A), such as prompt simplicity, is one which is dened by considering how fast elements elements enter A relat...
Definable properties of the computably enumerable sets
 Proceedings of the Oberwolfach Conference on Computability Theory
, 1996
"... Post 1944 began studying properties of a computably enumerable (c.e.) set A such as simple, hsimple, and hhsimple, with the intent of finding a property guaranteeing incompleteness of A. From observations of Post 1943 and Myhill 1956, attention focused by the 1950's on properties definable in the ..."
Abstract
 Add to MetaCart
Post 1944 began studying properties of a computably enumerable (c.e.) set A such as simple, hsimple, and hhsimple, with the intent of finding a property guaranteeing incompleteness of A. From observations of Post 1943 and Myhill 1956, attention focused by the 1950's on properties definable in the inclusion ordering of c.e. subsets of!, namely E = (fWngn2! ; ae). In the 1950's and 1960's Tennenbaum, Martin, Yates, Sacks, Lachlan, Shoenfield and others produced a number of elegant results relating Edefinable properties of A, like maximal, hhsimple, atomless, to the information content (usually the