Results 1  10
of
302
Transform Analysis and Asset Pricing for Affine JumpDiffusions
 Econometrica
, 2000
"... In the setting of ‘‘affine’ ’ jumpdiffusion state processes, this paper provides an analytical treatment of a class of transforms, including various Laplace and Fourier transforms as special cases, that allow an analytical treatment of a range of valuation and econometric problems. Example applicat ..."
Abstract

Cited by 402 (32 self)
 Add to MetaCart
In the setting of ‘‘affine’ ’ jumpdiffusion state processes, this paper provides an analytical treatment of a class of transforms, including various Laplace and Fourier transforms as special cases, that allow an analytical treatment of a range of valuation and econometric problems. Example applications include fixedincome pricing models, with a role for intensitybased models of default, as well as a wide range of optionpricing applications. An illustrative example examines the implications of stochastic volatility and jumps for option valuation. This example highlights the impact on option ‘smirks ’ of the joint distribution of jumps in volatility and jumps in the underlying asset price, through both jump amplitude as well as jump timing.
The Asymptotic Elasticity of Utility Functions and Optimal Investment in Incomplete Markets
 Annals of Applied Probability
, 1997
"... . The paper studies the problem of maximizing the expected utility of terminal wealth in the framework of a general incomplete semimartingale model of a financial market. We show that the necessary and sufficient condition on a utility function for the validity of several key assertions of the theor ..."
Abstract

Cited by 117 (9 self)
 Add to MetaCart
. The paper studies the problem of maximizing the expected utility of terminal wealth in the framework of a general incomplete semimartingale model of a financial market. We show that the necessary and sufficient condition on a utility function for the validity of several key assertions of the theory to hold true is the requirement that the asymptotic elasticity of the utility function is strictly less then one. 1. Introduction A basic problem of mathematical finance is the problem of an economic agent, who invests in a financial market so as to maximize the expected utility of his terminal wealth. In the framework of a continuoustime model the problem was studied for the first time by R. Merton in two seminal papers [27] and [28] (see also [29] as well as [32] for a treatment of the discrete time case). Using the methods of stochastic optimal control Merton derived a nonlinear partial differential equation (Bellman equation) for the value function of the optimization problem. He al...
Measuring Default Risk Premia from Default Swap Rates and EDFs
, 2004
"... This paper estimates recent default risk premia for U.S. corporate debt, based on a close relationship between default probabilities, as estimated by Moody's KMV EDFs, and default swap (CDS) market rates. The defaultswap data, obtained through CIBC from 22 banks and specialty dealers, allo ..."
Abstract

Cited by 104 (7 self)
 Add to MetaCart
This paper estimates recent default risk premia for U.S. corporate debt, based on a close relationship between default probabilities, as estimated by Moody's KMV EDFs, and default swap (CDS) market rates. The defaultswap data, obtained through CIBC from 22 banks and specialty dealers, allow us to establish a strong link between actual and riskneutral default probabilities for the 69 firms in the three sectors that we analyze: broadcasting and entertainment, healthcare, and oil and gas. We find dramatic variation over time in risk premia, from peaks in the thrid quarter of 2002, dropping by roughly 50% to late 2003.
TimeChanged Lévy Processes and Option Pricing
, 2002
"... As is well known, the classic BlackScholes option pricing model assumes that returns follow Brownian motion. It is widely recognized that return processes differ from this benchmark in at least three important ways. First, asset prices jump, leading to nonnormal return innovations. Second, return ..."
Abstract

Cited by 95 (14 self)
 Add to MetaCart
As is well known, the classic BlackScholes option pricing model assumes that returns follow Brownian motion. It is widely recognized that return processes differ from this benchmark in at least three important ways. First, asset prices jump, leading to nonnormal return innovations. Second, return volatilities vary stochastically over time. Third, returns and their volatilities are correlated, often negatively for equities. We propose that timechanged Lévy processes be used to simultaneously address these three facets of the underlying asset return process. We show that our framework encompasses almost all of the models proposed in the option pricing literature. Despite the generality of our approach, we show that it is straightforward to select and test a particular option pricing model through the use of characteristic function technology.
Modeling Sovereign Yield Spreads: A Case Study of Russian Debt
 Journal of Finance
, 2003
"... We construct a model for pricing sovereign debt that accounts for the risks of both default and restructuring, and allows for compensation for illiquidity. Using a new and relatively efficient method, we estimate the model using Russian dollardenominated bonds. We consider the determinants of the R ..."
Abstract

Cited by 89 (7 self)
 Add to MetaCart
We construct a model for pricing sovereign debt that accounts for the risks of both default and restructuring, and allows for compensation for illiquidity. Using a new and relatively efficient method, we estimate the model using Russian dollardenominated bonds. We consider the determinants of the Russian yield spread, the yield differential across different Russian bonds, and the implications for market integration, relative liquidity, relative expected recovery rates, and implied expectations of different default scenarios. THIS PAPER DEVELOPS A MODEL of the termstructure of credit spreads on sovereign bonds that accommodates: (i) Default or repudiation: The sovereign announces that it will stop making payments on its debt; (ii) Restructuring or renegotiation: The sovereign and the lenders ‘‘agree’ ’ to reduce (or postpone) the remaining payments; and (iii) A‘‘regime switch,’’such as a change of government or the default of another sovereign bond that changes the perceived risk of future defaults.We build on the framework of Duffie and Singleton (1999), showing that
New Insights Into Smile, Mispricing and Value At Risk: The Hyperbolic Model
 Journal of Business
, 1998
"... We investigate a new basic model for asset pricing, the hyperbolic model, which allows an almost perfect statistical fit of stock return data. After a brief introduction into the theory supported by an appendix we use also secondary market data to compare the hyperbolic model to the classical Black ..."
Abstract

Cited by 82 (7 self)
 Add to MetaCart
We investigate a new basic model for asset pricing, the hyperbolic model, which allows an almost perfect statistical fit of stock return data. After a brief introduction into the theory supported by an appendix we use also secondary market data to compare the hyperbolic model to the classical BlackScholes model. We study implicit volatilities, the smile effect and the pricing performance. Exploiting the full power of the hyperbolic model, we construct an option value process from a statistical point of view by estimating the implicit riskneutral density function from option data. Finally we present some new valueat risk calculations leading to new perspectives to cope with model risk. I Introduction There is little doubt that the BlackScholes model has become the standard in the finance industry and is applied on a large scale in everyday trading operations. On the other side its deficiencies have become a standard topic in research. Given the vast literature where refinements a...
Arbitrage with fractional Brownian motion
 Math. Finance
, 1997
"... Fractional Brownian motion has been suggested as a model for the movement of log share prices which would allow longrange dependence between returns on different days. While this is true, it also allows arbitrage opportunities, which we demonstrate both indirectly and by constructing such an arbitr ..."
Abstract

Cited by 65 (0 self)
 Add to MetaCart
Fractional Brownian motion has been suggested as a model for the movement of log share prices which would allow longrange dependence between returns on different days. While this is true, it also allows arbitrage opportunities, which we demonstrate both indirectly and by constructing such an arbitrage. Nonetheless, it is possible by looking at a process similar to the fractional Brownian motion to model longrange dependence of returns while avoiding arbitrage.
Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets
 SUBMITTED TO PROBABILITY THEORY AND RELATED FIELDS
, 1994
"... ..."
The Generalized Hyperbolic Model: Financial Derivatives and Risk Measures
 MATHEMATICAL FINANCE – BACHELIER CONGRESS 2000, GEMAN
, 1998
"... Statistical analysis of data from the nancial markets shows that generalized hyperbolic (GH) distributions allow a more realistic description of asset returns than the classical normal distribution. GH distributions contain as subclasses hyperbolic as well as normal inverse Gaussian (NIG) distributi ..."
Abstract

Cited by 45 (8 self)
 Add to MetaCart
Statistical analysis of data from the nancial markets shows that generalized hyperbolic (GH) distributions allow a more realistic description of asset returns than the classical normal distribution. GH distributions contain as subclasses hyperbolic as well as normal inverse Gaussian (NIG) distributions which have recently been proposed as basic ingredients to model price processes. GH distributions generate in a canonical way Levy processes, i.e. processes with stationary and independent increments. We introduce a model for price processes which is driven by generalized hyperbolic Levy motions. This GH model is a generalization of the hyperbolic model developed by Eberlein and Keller (1995). It is incomplete. We derive an option pricing formula for GH driven models using the Esscher transform as martingale measure and compare the prices with classical BlackScholes prices. The objective of this study is to examine the consistency of our model assumptions with the empirically obser...