Results 1  10
of
84
All Pairs Shortest Paths using Bridging Sets and Rectangular Matrix Multiplication
 Journal of the ACM
, 2000
"... We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves... ..."
Abstract

Cited by 62 (6 self)
 Add to MetaCart
We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves...
Exact and Approximate Distances in Graphs  a survey
 In ESA
, 2001
"... We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems. ..."
Abstract

Cited by 57 (0 self)
 Add to MetaCart
We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems.
More algorithms for allpairs shortest paths in weighted graphs
 In Proceedings of 39th Annual ACM Symposium on Theory of Computing
, 2007
"... In the first part of the paper, we reexamine the allpairs shortest paths (APSP) problem and present a new algorithm with running time O(n 3 log 3 log n / log 2 n), which improves all known algorithms for general realweighted dense graphs. In the second part of the paper, we use fast matrix multipl ..."
Abstract

Cited by 52 (3 self)
 Add to MetaCart
In the first part of the paper, we reexamine the allpairs shortest paths (APSP) problem and present a new algorithm with running time O(n 3 log 3 log n / log 2 n), which improves all known algorithms for general realweighted dense graphs. In the second part of the paper, we use fast matrix multiplication to obtain truly subcubic APSP algorithms for a large class of “geometrically weighted ” graphs, where the weight of an edge is a function of the coordinates of its vertices. For example, for graphs embedded in Euclidean space of a constant dimension d, we obtain a time bound near O(n 3−(3−ω)/(2d+4)), where ω < 2.376; in two dimensions, this is O(n 2.922). Our framework greatly extends the previously considered case of smallintegerweighted graphs, and incidentally also yields the first truly subcubic result (near O(n 3−(3−ω)/4) = O(n 2.844) time) for APSP in realvertexweighted graphs, as well as an improved result (near O(n (3+ω)/2) = O(n 2.688) time) for the allpairs lightest shortest path problem for smallintegerweighted graphs. 1
On The Complexity Of Computing Determinants
 COMPUTATIONAL COMPLEXITY
, 2001
"... We present new baby steps/giant steps algorithms of asymptotically fast running time for dense matrix problems. Our algorithms compute the determinant, characteristic polynomial, Frobenius normal form and Smith normal form of a dense n n matrix A with integer entries in (n and (n bi ..."
Abstract

Cited by 47 (17 self)
 Add to MetaCart
We present new baby steps/giant steps algorithms of asymptotically fast running time for dense matrix problems. Our algorithms compute the determinant, characteristic polynomial, Frobenius normal form and Smith normal form of a dense n n matrix A with integer entries in (n and (n bit operations; here denotes the largest entry in absolute value and the exponent adjustment by "+o(1)" captures additional factors for positive real constants C 1 , C 2 , C 3 . The bit complexity (n results from using the classical cubic matrix multiplication algorithm. Our algorithms are randomized, and we can certify that the output is the determinant of A in a Las Vegas fashion. The second category of problems deals with the setting where the matrix A has elements from an abstract commutative ring, that is, when no divisions in the domain of entries are possible. We present algorithms that deterministically compute the determinant, characteristic polynomial and adjoint of A with n and O(n ) ring additions, subtractions and multiplications.
A Fully Dynamic Algorithm for Maintaining the Transitive Closure
 In Proc. 31st ACM Symposium on Theory of Computing (STOC'99
, 1999
"... This paper presents an efficient fully dynamic graph algorithm for maintaining the transitive closure of a directed graph. The algorithm updates the adjacency matrix of the transitive closure with each update to the graph. Hence, each reachability query of the form "Is there a directed path fro ..."
Abstract

Cited by 44 (1 self)
 Add to MetaCart
This paper presents an efficient fully dynamic graph algorithm for maintaining the transitive closure of a directed graph. The algorithm updates the adjacency matrix of the transitive closure with each update to the graph. Hence, each reachability query of the form "Is there a directed path from i to j?" can be answered in O(1) time. The algorithm is randomized; it is correct when answering yes, but has O(1/n^c) probability of error when answering no, for any constant c. In acyclic graphs, worst case update time is O(n^2). In general graphs, update time is O(n^(2+alpha)), where alpha = min {.26, maximum size of a strongly connected component}. The space complexity of the algorithm is O(n^2).
Fully Dynamic Transitive Closure: Breaking Through The O(n²) Barrier
 IN PROC. IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE
, 2000
"... In this paper we introduce a general framework for casting fully dynamic transitive closure into the problem of reevaluating polynomials over matrices. With this technique, we improve the best known bounds for fully dynamic transitive closure. In particular, we devise a deterministic algorithm for g ..."
Abstract

Cited by 41 (7 self)
 Add to MetaCart
In this paper we introduce a general framework for casting fully dynamic transitive closure into the problem of reevaluating polynomials over matrices. With this technique, we improve the best known bounds for fully dynamic transitive closure. In particular, we devise a deterministic algorithm for general directed graphs that achieves O(n²) amortized time for updates, while preserving unit worstcase cost for queries. In case of deletions only, our algorithm performs updates faster in O(n) amortized time. Our
Fast Sparse Matrix Multiplication
, 2004
"... Let A and B two n n matrices over a ring R (e.g., the reals or the integers) each containing at most m nonzero elements. We present a new algorithm that multiplies A and B using O(m ) algebraic operations (i.e., multiplications, additions and subtractions) over R. The naive matrix multi ..."
Abstract

Cited by 38 (2 self)
 Add to MetaCart
Let A and B two n n matrices over a ring R (e.g., the reals or the integers) each containing at most m nonzero elements. We present a new algorithm that multiplies A and B using O(m ) algebraic operations (i.e., multiplications, additions and subtractions) over R. The naive matrix multiplication algorithm, on the other hand, may need to perform #(mn) operations to accomplish the same task. For , the new algorithm performs an almost optimal number of only n operations. For m the new algorithm is also faster than the best known matrix multiplication algorithm for dense matrices which uses O(n ) algebraic operations. The new algorithm is obtained using a surprisingly straightforward combination of a simple combinatorial idea and existing fast rectangular matrix multiplication algorithms. We also obtain improved algorithms for the multiplication of more than two sparse matrices.
All Pairs Shortest Paths in weighted directed graphs  exact and almost exact algorithms
, 1998
"... We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves the APSP problem for weighted directed graphs in which the edge weights are integers of small abso ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves the APSP problem for weighted directed graphs in which the edge weights are integers of small absolute value in ~ O(n 2+ ) time, where satisfies the equation !(1; ; 1) = 1 + 2 and !(1; ; 1) is the exponent of the multiplication of an n \Theta n matrix by an n \Theta n matrix. The currently best available bounds on !(1; ; 1), obtained by Coppersmith and Winograd, and by Huang and Pan, imply that ! 0:575. The running time of our algorithm is therefore O(n 2:575 ). Our algorithm improves on the ~ O(n (3+!)=2 ) time algorithm, where ! = !(1; 1; 1) ! 2:376 is the usual exponent of matrix multiplication, obtained by Alon, Galil and Margalit, whose running time is only known to be O(n 2:688 ). The second
Improved Dynamic Reachability Algorithms for Directed Graphs
, 2002
"... We obtain several new dynamic algorithms for maintaining the transitive closure of a directed graph, and several other algorithms for answering reachability queries without explicitly maintaining a transitive closure matrix. Among our algorithms are: (i) A decremental algorithm for maintaining the ..."
Abstract

Cited by 29 (3 self)
 Add to MetaCart
We obtain several new dynamic algorithms for maintaining the transitive closure of a directed graph, and several other algorithms for answering reachability queries without explicitly maintaining a transitive closure matrix. Among our algorithms are: (i) A decremental algorithm for maintaining the transitive closure of a directed graph, through an arbitrary sequence of edge deletions, in O(mn) total expected time, essentially the time needed for computing the transitive closure of the initial graph. Such a result was previously known only for acyclic graphs.