Results 1  10
of
153
A Gröbner free alternative for polynomial system solving
 Journal of Complexity
, 2001
"... Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolution consists of a primitive element of the algebraic ..."
Abstract

Cited by 82 (16 self)
 Add to MetaCart
Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolution consists of a primitive element of the algebraic extension defined by the set of roots, its minimal polynomial and the parametrizations of the coordinates. Such a representation of the solutions has a long history which goes back to Leopold Kronecker and has been revisited many times in computer algebra. We introduce a new generation of probabilistic algorithms where all the computations use only univariate or bivariate polynomials. We give a new codification of the set of solutions of a positive dimensional algebraic variety relying on a new global version of Newton’s iterator. Roughly speaking the complexity of our algorithm is polynomial in some kind of degree of the system, in its height, and linear in the complexity of evaluation
Subquadratictime factoring of polynomials over finite fields
 Math. Comp
, 1998
"... Abstract. New probabilistic algorithms are presented for factoring univariate polynomials over finite fields. The algorithms factor a polynomial of degree n over a finite field of constant cardinality in time O(n 1.815). Previous algorithms required time Θ(n 2+o(1)). The new algorithms rely on fast ..."
Abstract

Cited by 68 (11 self)
 Add to MetaCart
Abstract. New probabilistic algorithms are presented for factoring univariate polynomials over finite fields. The algorithms factor a polynomial of degree n over a finite field of constant cardinality in time O(n 1.815). Previous algorithms required time Θ(n 2+o(1)). The new algorithms rely on fast matrix multiplication techniques. More generally, to factor a polynomial of degree n over the finite field Fq with q elements, the algorithms use O(n 1.815 log q) arithmetic operations in Fq. The new “baby step/giant step ” techniques used in our algorithms also yield new fast practical algorithms at superquadratic asymptotic running time, and subquadratictime methods for manipulating normal bases of finite fields. 1.
All Pairs Shortest Paths using Bridging Sets and Rectangular Matrix Multiplication
 Journal of the ACM
, 2000
"... We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves... ..."
Abstract

Cited by 60 (6 self)
 Add to MetaCart
We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves...
Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers
 J. Complexity
, 2000
"... We present a new probabilistic method for solving systems of polynomial equations and inequations. Our algorithm computes the equidimensional decomposition of the Zariski closure of the solution set of such systems. Each equidimensional component is encoded by a generic fiber, that is a finite set o ..."
Abstract

Cited by 58 (2 self)
 Add to MetaCart
We present a new probabilistic method for solving systems of polynomial equations and inequations. Our algorithm computes the equidimensional decomposition of the Zariski closure of the solution set of such systems. Each equidimensional component is encoded by a generic fiber, that is a finite set of points obtained from the intersection of the component with a generic transverse affine subspace. Our algorithm is incremental in the number of equations to be solved. Its complexity is mainly cubic in the maximum of the degrees of the solution sets of the intermediate systems counting multiplicities. Our method is designed for coefficient fields having characteristic zero or big enough with respect to the number of solutions. If the base field is the field of the rational numbers then the resolution is first performed modulo a random prime number after we have applied a random change of coordinates. Then we search for coordinates with small integers and lift the solutions up to the rational numbers. Our implementation is available within our package Kronecker from version 0.166, which is written in the Magma computer algebra system. 1
MultiLinear Formulas for Permanent and Determinant are of SuperPolynomial Size
 Proceeding of the 36th STOC
, 2003
"... An arithmetic formula is multilinear if the polynomial computed by each of its subformulas is multilinear. We prove that any multilinear arithmetic formula for the permanent or the determinant of an n n matrix is of size superpolynomial in n. ..."
Abstract

Cited by 45 (11 self)
 Add to MetaCart
An arithmetic formula is multilinear if the polynomial computed by each of its subformulas is multilinear. We prove that any multilinear arithmetic formula for the permanent or the determinant of an n n matrix is of size superpolynomial in n.
Fast Sparse Matrix Multiplication
, 2004
"... Let A and B two n n matrices over a ring R (e.g., the reals or the integers) each containing at most m nonzero elements. We present a new algorithm that multiplies A and B using O(m ) algebraic operations (i.e., multiplications, additions and subtractions) over R. The naive matrix multi ..."
Abstract

Cited by 36 (2 self)
 Add to MetaCart
Let A and B two n n matrices over a ring R (e.g., the reals or the integers) each containing at most m nonzero elements. We present a new algorithm that multiplies A and B using O(m ) algebraic operations (i.e., multiplications, additions and subtractions) over R. The naive matrix multiplication algorithm, on the other hand, may need to perform #(mn) operations to accomplish the same task. For , the new algorithm performs an almost optimal number of only n operations. For m the new algorithm is also faster than the best known matrix multiplication algorithm for dense matrices which uses O(n ) algebraic operations. The new algorithm is obtained using a surprisingly straightforward combination of a simple combinatorial idea and existing fast rectangular matrix multiplication algorithms. We also obtain improved algorithms for the multiplication of more than two sparse matrices.
NPcomplete problems and physical reality
 ACM SIGACT News Complexity Theory Column, March. ECCC
, 2005
"... Can NPcomplete problems be solved efficiently in the physical universe? I survey proposals including soap bubbles, protein folding, quantum computing, quantum advice, quantum adiabatic algorithms, quantummechanical nonlinearities, hidden variables, relativistic time dilation, analog computing, Mal ..."
Abstract

Cited by 32 (4 self)
 Add to MetaCart
Can NPcomplete problems be solved efficiently in the physical universe? I survey proposals including soap bubbles, protein folding, quantum computing, quantum advice, quantum adiabatic algorithms, quantummechanical nonlinearities, hidden variables, relativistic time dilation, analog computing, MalamentHogarth spacetimes, quantum gravity, closed timelike curves, and “anthropic computing. ” The section on soap bubbles even includes some “experimental ” results. While I do not believe that any of the proposals will let us solve NPcomplete problems efficiently, I argue that by studying them, we can learn something not only about computation but also about physics. 1
Computing over the reals: Foundations for scientific computing
 Notices of the AMS
"... We give a detailed treatment of the “bitmodel ” of computability and complexity of real functions and subsets of R n, and argue that this is a good way to formalize many problems of scientific computation. In Section 1 we also discuss the alternative BlumShubSmale model. In the final section we d ..."
Abstract

Cited by 32 (3 self)
 Add to MetaCart
We give a detailed treatment of the “bitmodel ” of computability and complexity of real functions and subsets of R n, and argue that this is a good way to formalize many problems of scientific computation. In Section 1 we also discuss the alternative BlumShubSmale model. In the final section we discuss the issue of whether physical systems could defeat the ChurchTuring Thesis. 1
Accidental Algorithms
 In Proc. 47th Annual IEEE Symposium on Foundations of Computer Science 2006
, 2004
"... Complexity theory is built fundamentally on the notion of efficient reduction among computational problems. Classical reductions involve gadgets that map solution fragments of one problem to solution fragments of another in onetoone, or possibly onetomany, fashion. In this paper we propose a new ..."
Abstract

Cited by 31 (2 self)
 Add to MetaCart
Complexity theory is built fundamentally on the notion of efficient reduction among computational problems. Classical reductions involve gadgets that map solution fragments of one problem to solution fragments of another in onetoone, or possibly onetomany, fashion. In this paper we propose a new kind of reduction that allows for gadgets with manytomany correspondences, in which the individual correspondences among the solution fragments can no longer be identified. Their objective may be viewed as that of generating interference patterns among these solution fragments so as to conserve their sum. We show that such holographic reductions provide a method of translating a combinatorial problem to finite systems of polynomial equations with integer coefficients such that the number of solutions of the combinatorial problem can be counted in polynomial time if one of the systems has a solution over the complex numbers. We derive polynomial time algorithms in this way for a number of problems for which only exponential time algorithms were known before. General questions about complexity classes can also be formulated. If the method is applied to a #Pcomplete problem then polynomial systems can be obtained the solvability of which would imply P #P = NC2. 1