Results 11 
15 of
15
A Categorical Semantics of Higher Order Store
 Proceedings, 9th Conference on Category Theory and Computer Science, CTCS 2002, Electronic Notes in Theoretical Computer Science
, 2002
"... We give a categorical description of a class of sound and adequate models of a functional language with assignable variables. This is based on a notion of \sequoidal category", a symmetric monoidal category with an additional noncommutative and nonassociative tensor product. We describe a category ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
We give a categorical description of a class of sound and adequate models of a functional language with assignable variables. This is based on a notion of \sequoidal category", a symmetric monoidal category with an additional noncommutative and nonassociative tensor product. We describe a category G of games and strategies, and show that it satis es our axioms. We give an axiomatic characterization of those categories (including G) which give rise to fully abstract models.
A Simple Adequate Categorical Model for PCF
 In Proceedings of Third International Conference on Typed Lambda Calculi and Applications
, 1997
"... Usually types of PCF are interpreted as cpos and terms as continuous functions. It is then the case that nontermination of a closed term of ground type corresponds to the interpretation being bottom; we say that the semantics is adequate. We shall here present an axiomatic approach to adequacy for ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Usually types of PCF are interpreted as cpos and terms as continuous functions. It is then the case that nontermination of a closed term of ground type corresponds to the interpretation being bottom; we say that the semantics is adequate. We shall here present an axiomatic approach to adequacy for PCF in the sense that we will introduce categorical axioms enabling an adequate semantics to be given. We assume the presence of certain "bottom" maps with the role of being the interpretation of nonterminating terms, but the orderstructure is left out. This is different from previous approaches where some kind of ordertheoretic structure has been considered as part of an adequate categorical model for PCF. We take the point of view that partiality is the fundamental notion from which orderstructure should be derived, which is corroborated by the observation that our categorical model induces an ordertheoretic model for PCF in a canonical way.
Games and Sequential Algorithms
, 2001
"... The relationship between HylandOngstyle games and BerryCurien sequential algorithms is investigated, with the object of describing semantic solutions to two problems  to characterise eectively the \minimal models" of the simplytyped calculus and the fully abstract model of PCF with control ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
The relationship between HylandOngstyle games and BerryCurien sequential algorithms is investigated, with the object of describing semantic solutions to two problems  to characterise eectively the \minimal models" of the simplytyped calculus and the fully abstract model of PCF with control operators  which are shown to be equivalent.
A Fully Complete PER Model for ML Polymorphic Types
 Proceedings of CSL 2000, Springer LNCS Volume 1862
, 2000
"... . We present a linear realizability technique for building Partial Equivalence Relations (PER) categories over Linear Combinatory Algebras. These PER categories turn out to be linear categories and to form an adjoint model with their coKleisli categories. We show that a special linear combinato ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
. We present a linear realizability technique for building Partial Equivalence Relations (PER) categories over Linear Combinatory Algebras. These PER categories turn out to be linear categories and to form an adjoint model with their coKleisli categories. We show that a special linear combinatory algebra of partial involutions, arising from Geometry of Interaction constructions, gives rise to a fully and faithfully complete model for ML polymorphic types of system F. Keywords: MLpolymorphic types, linear logic, PER models, Geometry of Interaction, full completeness. Introduction Recently, Game Semantics has been used to define fullycomplete models for various fragments of Linear Logic ([AJ94a,AM99]), and to give fullyabstract models for many programming languages, including PCF [AJM96,HO96,Nic94], richer functional languages [McC96], and languages with nonfunctional features such as reference types and nonlocal control constructs [AM97,Lai97]. All these results are cru...
Fully Complete Models for ML Polymorphic Types
, 1999
"... We present an axiomatic characterization of models fullycomplete for MLpolymorphic types of system F. This axiomatization is given for hyperdoctrine models, which arise as adjoint models, i.e. coKleisli categories of suitable linear categories. Examples of adjoint models can be obtained from cate ..."
Abstract
 Add to MetaCart
We present an axiomatic characterization of models fullycomplete for MLpolymorphic types of system F. This axiomatization is given for hyperdoctrine models, which arise as adjoint models, i.e. coKleisli categories of suitable linear categories. Examples of adjoint models can be obtained from categories of Partial Equivalence Relations over Linear Combinatory Algebras. We show that a special linear combinatory algebra of partial involutions induces an hyperdoctrine which satisfies our axiomatization, and hence it provides a fullycomplete model for MLtypes.