Results 1 
3 of
3
Inheritance As Implicit Coercion
 Information and Computation
, 1991
"... . We present a method for providing semantic interpretations for languages with a type system featuring inheritance polymorphism. Our approach is illustrated on an extension of the language Fun of Cardelli and Wegner, which we interpret via a translation into an extended polymorphic lambda calculus. ..."
Abstract

Cited by 120 (3 self)
 Add to MetaCart
. We present a method for providing semantic interpretations for languages with a type system featuring inheritance polymorphism. Our approach is illustrated on an extension of the language Fun of Cardelli and Wegner, which we interpret via a translation into an extended polymorphic lambda calculus. Our goal is to interpret inheritances in Fun via coercion functions which are definable in the target of the translation. Existing techniques in the theory of semantic domains can be then used to interpret the extended polymorphic lambda calculus, thus providing many models for the original language. This technique makes it possible to model a rich type discipline which includes parametric polymorphism and recursive types as well as inheritance. A central difficulty in providing interpretations for explicit type disciplines featuring inheritance in the sense discussed in this paper arises from the fact that programs can typecheck in more than one way. Since interpretations follow the type...
Programming with Intersection Types and Bounded Polymorphism
, 1991
"... representing the official policies, either expressed or implied, of the U.S. Government. ..."
Abstract

Cited by 67 (4 self)
 Add to MetaCart
representing the official policies, either expressed or implied, of the U.S. Government.
Polarized HigherOrder Subtyping
, 1997
"... The calculus of higher order subtyping, known as F ω ≤ , a higherorder polymorphic λcalculus with subtyping, is expressive enough to serve as core calculus for typed objectoriented languages. The versions considered in the literature usually support only pointwise subtyping of type operators, whe ..."
Abstract

Cited by 32 (1 self)
 Add to MetaCart
The calculus of higher order subtyping, known as F ω ≤ , a higherorder polymorphic λcalculus with subtyping, is expressive enough to serve as core calculus for typed objectoriented languages. The versions considered in the literature usually support only pointwise subtyping of type operators, where two types S U and T U are in subtype relation, if S and T are. In the widely cited, unpublished note [Car90], Cardelli presents F ω ≤ in a more general form going beyond pointwise subtyping of type applications in distinguishing between monotone and antimonotone operators. Thus, for instance, T U1 is a subtype of T U2, if U1 ≤ U2 and T is a monotone operator. My thesis extends F ω ≤ by polarized application, it explores its proof theory, establishing decidability of polarized F ω ≤. The inclusion of polarized application rules leads to an interdependence of the subtyping and the kinding system. This contrasts with pure F ω ≤ , where subtyping depends on kinding but not vice versa. To retain decidability of the system, the equalbounds subtyping rule for alltypes is rephrased in the polarized setting as a mutualsubtype requirement of the upper bounds.