Results 1  10
of
122
Routing with Guaranteed Delivery in ad hoc Wireless Networks
 WIRELESS NETWORKS
, 2001
"... We consider routing problems in ad hoc wireless networks modeled as unit graphs in which nodes are points in the plane and two nodes can communicate if the distance between them is less than some fixed unit. We describe the first distributed algorithms for routing that do not require duplication of ..."
Abstract

Cited by 707 (77 self)
 Add to MetaCart
We consider routing problems in ad hoc wireless networks modeled as unit graphs in which nodes are points in the plane and two nodes can communicate if the distance between them is less than some fixed unit. We describe the first distributed algorithms for routing that do not require duplication of packets or memory at the nodes and yet guarantee that a packet is delivered to its destination. These algorithms can be extended to yield algorithms for broadcasting and geocasting that do not require packet duplication. A byproduct of our results is a simple distributed protocol for extracting a planar subgraph of a unit graph. We also present simulation results on the performance of our algorithms.
Distributed Construction of a Planar Spanner and Routing for Ad Hoc Wireless Networks
, 2002
"... Several localized routing protocols [1] guarantee the delivery of the packets when the underlying network topology is the Delaunay triangulation of all wireless nodes. However, it is expensive to construct the Delaunay triangulation in a distributed manner. Given a set of wireless nodes, we more acc ..."
Abstract

Cited by 119 (22 self)
 Add to MetaCart
(Show Context)
Several localized routing protocols [1] guarantee the delivery of the packets when the underlying network topology is the Delaunay triangulation of all wireless nodes. However, it is expensive to construct the Delaunay triangulation in a distributed manner. Given a set of wireless nodes, we more accurately model the network as a unitdisk graph UDG , in which a link in between two nodes exist only if the distance in between them is at most the maximum transmission range.
Online Routing in Triangulations
 IN PROC. OF THE 10 TH ANNUAL INT. SYMP. ON ALGORITHMS AND COMPUTATION ISAAC
, 1999
"... We consider online routing strategies for routing between the vertices of embedded planar straight line graphs. Our results include (1) two deterministic memoryless routing strategies, one that works for all Delaunay triangulations and the other that works for all regular triangulations, (2) a ..."
Abstract

Cited by 116 (11 self)
 Add to MetaCart
We consider online routing strategies for routing between the vertices of embedded planar straight line graphs. Our results include (1) two deterministic memoryless routing strategies, one that works for all Delaunay triangulations and the other that works for all regular triangulations, (2) a randomized memoryless strategy that works for all triangulations, (3) an O(1) memory strategy that works for all convex subdivisions, (4) an O(1) memory strategy that approximates the shortest path in Delaunay triangulations, and (5) theoretical and experimental results on the competitiveness of these strategies.
GraspIt!  A Versatile Simulator for Robotic Grasping
, 2004
"... Research in robotic grasping has flourished in the last 25 years. A recent survey by Bicchi [1] covered over 140 papers, and many more than that have been published. Stemming from our desire to implement some of the work in grasp analysis for particular hand designs, we created an interactive graspi ..."
Abstract

Cited by 108 (17 self)
 Add to MetaCart
Research in robotic grasping has flourished in the last 25 years. A recent survey by Bicchi [1] covered over 140 papers, and many more than that have been published. Stemming from our desire to implement some of the work in grasp analysis for particular hand designs, we created an interactive grasping simulator that can import a wide variety of hand and object models and can evaluate the grasps formed by these hands. This system, dubbed “GraspIt!,” has since expanded in scope to the point where we feel it could serve as a useful tool for other researchers in the field. To that end, we are making the system publicly available (GraspIt! is available for download for a variety of platforms from
Towards Exact Geometric Computation
, 1994
"... Exact computation is assumed in most algorithms in computational geometry. In practice, implementors perform computation in some fixedprecision model, usually the machine floatingpoint arithmetic. Such implementations have many wellknown problems, here informally called "robustness issues&quo ..."
Abstract

Cited by 92 (6 self)
 Add to MetaCart
Exact computation is assumed in most algorithms in computational geometry. In practice, implementors perform computation in some fixedprecision model, usually the machine floatingpoint arithmetic. Such implementations have many wellknown problems, here informally called "robustness issues". To reconcile theory and practice, authors have suggested that theoretical algorithms ought to be redesigned to become robust under fixedprecision arithmetic. We suggest that in many cases, implementors should make robustness a nonissue by computing exactly. The advantages of exact computation are too many to ignore. Many of the presumed difficulties of exact computation are partly surmountable and partly inherent with the robustness goal. This paper formulates the theoretical framework for exact computation based on algebraic numbers. We then examine the practical support needed to make the exact approach a viable alternative. It turns out that the exact computation paradigm encomp...
Localized construction of bounded degree and planar spanner for wireless ad hoc networks
 In DIALMPOMC
, 2003
"... We propose a novel localized algorithm that constructs a bounded degree and planar spanner for wireless ad hoc networks modeled by unit disk graph (UDG). Every node only has to know its 2hop neighbors to find the edges in this new structure. Our method applies the Yao structure on the local Delauna ..."
Abstract

Cited by 72 (9 self)
 Add to MetaCart
(Show Context)
We propose a novel localized algorithm that constructs a bounded degree and planar spanner for wireless ad hoc networks modeled by unit disk graph (UDG). Every node only has to know its 2hop neighbors to find the edges in this new structure. Our method applies the Yao structure on the local Delaunay graph [21] in an ordering that are computed locally. This new structure has the following attractive properties: (1) it is a planar graph; (2) its node degree is bounded from above by a positive constant 19 + ⌈ 2π α ⌉; (3) it is a tspanner (given any two nodes u and v, there is a path connecting them in the structure such that its length is no more than t ≤ max { π α,πsin 2 2 +1}·Cdel times of the shortest path in UDG); (4) it can be constructed locally and is easy to maintain when the nodes move around; (5) moreover, we show that the total communication cost is O(n), where n is the number of wireless nodes, and the computation cost of each node is at most O(d log d), where d is its 2hop neighbors in the original unit disk graph. Here Cdel is the spanning ratio of the Delaunay triangulation, which is at most 4 √ 3 9 π. And the adjustable parameter α satisfies 0 <α<π/3. In addition, experiments are conducted to show this topology is efficient in practice, compared with other wellknown topologies used in wireless ad hoc networks. Previously, only centralized method [5] of constructing bounded degree planar spanner is known, with degree bound 27 and spanning ratio t ≃ 10.02. The distributed implementation of their centralized method takes O(n 2) communications in the worst case. No localized methods were known previously for constructing bounded degree planar spanner.
Localized Delaunay Triangulation with Application in Ad Hoc Wireless Networks
 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
, 2003
"... Several localized routing protocols guarantee the delivery of the packets when the underlying network topology is a planar graph. Typically, relative neighborhood graph (RNG) or Gabriel graph (GG) is used as such planar structure. However, it is wellknown that the spanning ratios of these two grap ..."
Abstract

Cited by 59 (8 self)
 Add to MetaCart
Several localized routing protocols guarantee the delivery of the packets when the underlying network topology is a planar graph. Typically, relative neighborhood graph (RNG) or Gabriel graph (GG) is used as such planar structure. However, it is wellknown that the spanning ratios of these two graphs are not bounded by any constant (even for uniform randomly distributed points). Bose et al. [11] recently developed a localized routing protocol that guarantees that the distance traveled by the packets is within a constant factor of the minimum if Delaunay triangulation of all wireless nodes is used, in addition, to guarantee the delivery of the packets. However, it is expensive to construct the Delaunay triangulation in a distributed manner. Given a set of wireless nodes, we model the network as a unitdisk graph (UDG), in which a link uv exists only if the distance kuvk is at most the maximum transmission range. In this paper, we present a novel localized networking protocol that constructs a planar 2.5spanner of UDG, called the localized Delaunay triangulation (LDEL), as network topology. It contains all edges that are both in the unitdisk graph and the Delaunay triangulation of all nodes. The total communication cost of our networking protocol is Oðn log nÞ bits, which is within a constant factor of the optimum to construct any structure in a distributed manner. Our experiments show that the delivery rates of some of the existing localized routing protocols are increased when localized Delaunay triangulation is used instead of several previously proposed topologies. Our simulations also show that the traveled distance of the packets is significantly less when the FACE routing algorithm is applied on LDEL, rather than applied on GG.
Calibrated, Registered Images of an Extended Urban Area
 International Journal of Computer Vision
, 2003
"... We describe a dataset of several thousand calibrated, timestamped, georeferenced, high dynamic range color images, acquired under uncontrolled, variable illumination conditions in an outdoor region spanning several hundred meters. The image data is grouped into several regions which have little ..."
Abstract

Cited by 56 (4 self)
 Add to MetaCart
(Show Context)
We describe a dataset of several thousand calibrated, timestamped, georeferenced, high dynamic range color images, acquired under uncontrolled, variable illumination conditions in an outdoor region spanning several hundred meters. The image data is grouped into several regions which have little mutual intervisibility. For each group, the calibration data is globally consistent on average to roughly five centimeters and 0.1 # , or about four pixels of epipolar registration. All image, feature and calibration data is available for interactive inspection and downloading at http://city.lcs.mit.edu/data.
Competitive Online Routing in Geometric Graphs
 Theoretical Computer Science
, 2001
"... We consider online routing algorithms for finding paths between the vertices of plane graphs. ..."
Abstract

Cited by 37 (4 self)
 Add to MetaCart
We consider online routing algorithms for finding paths between the vertices of plane graphs.
Analytic Variations on QuadTrees
, 1991
"... Quadtrees constitute a hierarchical data structure which permits fast access to multidimensional data. This paper presents the analysis of the expected cost of various types of searches in quadtreesfully specified and partial match queries. The data model assumes random points with independently ..."
Abstract

Cited by 31 (4 self)
 Add to MetaCart
Quadtrees constitute a hierarchical data structure which permits fast access to multidimensional data. This paper presents the analysis of the expected cost of various types of searches in quadtreesfully specified and partial match queries. The data model assumes random points with independently drawn coordinate values. The analysis leads to a class of "fullhistory" divideandconquer recurrences. These recurrences are solved using generating functions, either exactly for dimension d = 2, or asymptotically for higher dimensions. The exact solutions involve hypergeometric functions. The general asymptotic solutions relie on the classification of singularities of linear differential equations with analytic coefficients, and on singularity analysis techniques. These methods are applicable to the asymptotic solution of a wide range of linear recurrences, as may occur in particular in the analysis of multidimensional searching problems.