Results 1 
3 of
3
Robust Solutions To LeastSquares Problems With Uncertain Data
, 1997
"... . We consider leastsquares problems where the coefficient matrices A; b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be interpret ..."
Abstract

Cited by 144 (12 self)
 Add to MetaCart
. We consider leastsquares problems where the coefficient matrices A; b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be interpreted as a Tikhonov regularization procedure, with the advantage that it provides an exact bound on the robustness of solution, and a rigorous way to compute the regularization parameter. When the perturbation has a known (e.g., Toeplitz) structure, the same problem can be solved in polynomialtime using semidefinite programming (SDP). We also consider the case when A; b are rational functions of an unknownbutbounded perturbation vector. We show how to minimize (via SDP) upper bounds on the optimal worstcase residual. We provide numerical examples, including one from robust identification and one from robust interpolation. Key Words. Leastsquares, uncertainty, robustness, secondorder cone...
Robust Solutions To Uncertain Semidefinite Programs
, 1998
"... In this paper we consider semidenite programs (SDPs) whose data depends on some unknownbutbounded perturbation parameters. We seek "robust" solutions to such programs, that is, solutions which minimize the (worstcase) objective while satisfying the constraints for every possible values of paramet ..."
Abstract

Cited by 55 (2 self)
 Add to MetaCart
In this paper we consider semidenite programs (SDPs) whose data depends on some unknownbutbounded perturbation parameters. We seek "robust" solutions to such programs, that is, solutions which minimize the (worstcase) objective while satisfying the constraints for every possible values of parameters within the given bounds. Assuming the data matrices are rational functions of the perturbation parameters, we show how to formulate sufficient conditions for a robust solution to exist, as SDPs. When the perturbation is "full", our conditions are necessary and sufficient. In this case, we provide sufficient conditions which guarantee that the robust solution is unique, and continuous (Hölderstable) with respect to the unperturbed problems' data. The approach can thus be used to regularize illconditioned SDPs. We illustrate our results with examples taken from linear programming, maximum norm minimization, polynomial interpolation and integer programming.
Robust Least Squares and Applications
"... We consider leastsquares problems where the coefficient matrices A, b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming (SOCP), yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be int ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We consider leastsquares problems where the coefficient matrices A, b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming (SOCP), yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be interpreted as a Tikhonov regularization procedure, with the advantage that it provides an exact bound on the robustness of solution, and a rigorous way to compute the regularization parameter. When the perturbation has a known (e.g., Toeplitz) structure, the same problem can be solved in polynomialtime using semidefinite programming (SDP). We also consider the case when A, b are rational functions of an unknownbutbounded per turbation vector. We show how to minimize (via SDP) upper bounds on the optimal worstcase residual. We provide numerical examples, including one from robust identification and one from robust interpolation.