Results 1  10
of
253
A NoArbitrage Vector Autoregression of Term Structure Dynamics with Macroeconomic and Latent Variables
, 2002
"... ..."
Term Premia and Interest Rate Forecasts in Affine Models
, 2001
"... I find that the standard class of a#ne models produces poor forecasts of future changes in Treasury yields. Better forecasts are generated by assuming that yields follow random walks. The failure of these models is driven by one of their key features: The compensation that investors receive for faci ..."
Abstract

Cited by 250 (8 self)
 Add to MetaCart
I find that the standard class of a#ne models produces poor forecasts of future changes in Treasury yields. Better forecasts are generated by assuming that yields follow random walks. The failure of these models is driven by one of their key features: The compensation that investors receive for facing risk is a multiple of the variance of the risk. This means that risk compensation cannot vary independently of interest rate volatility. I also describe and empirically estimate a class of models that is broader than the standard a#ne class. These "essentially a#ne" models retain the tractability of the usual models, but allow the compensation for interest rate risk to vary independently of interest rate volatility. This additional flexibility proves useful in forming accurate forecasts of future yields. Address correspondence to the University of California, Haas School of Business, 545 Student Services Building #1900, Berkeley, CA 94720. Phone: 5106421435. Email address: du#ee@haas.b...
What does the Yield Curve Tell us about GDP Growth?
, 2003
"... A lot, including a few things you may not expect. Previous studies find that the term spread forecasts GDP but these regressions are unconstrained and do not model regressor endogeneity. We build a dynamic model for GDP growth and yields that completely characterizes expectations of GDP. The model d ..."
Abstract

Cited by 101 (4 self)
 Add to MetaCart
A lot, including a few things you may not expect. Previous studies find that the term spread forecasts GDP but these regressions are unconstrained and do not model regressor endogeneity. We build a dynamic model for GDP growth and yields that completely characterizes expectations of GDP. The model does not permit arbitrage. Contrary to previous findings, we predict that the short rate has more predictive power than any term spread. We confirm this finding by forecasting GDP outofsample. The model also recommends the use of lagged GDP and the longest maturity yield to measure slope. Greater efficiency enables the yieldcurve model to produce superior outofsample GDP forecasts than unconstrained OLS at all horizons.
New Techniques to Extract Market Expectations from Financial Instruments
 Journal of Monetary Economics
, 1997
"... Central banks have several reasons for extracting information from asset prices. Asset prices may embody more accurate and more uptodate macroeconomic data than what is currently published or directly available to policy makers. Aberrations in some asset prices may indicate ..."
Abstract

Cited by 94 (4 self)
 Add to MetaCart
Central banks have several reasons for extracting information from asset prices. Asset prices may embody more accurate and more uptodate macroeconomic data than what is currently published or directly available to policy makers. Aberrations in some asset prices may indicate
Expectation puzzles, timevarying risk premia, and affine models of the term structure
 Journal of Financial Economics
, 2002
"... Though linear projections of returns on the slope of the yield curve have contradicted the implications of the traditional “expectations theory, ” we show that these findings are not puzzling relative to a large class of richer dynamic term structure models. Specifically, we are able to match all of ..."
Abstract

Cited by 80 (15 self)
 Add to MetaCart
Though linear projections of returns on the slope of the yield curve have contradicted the implications of the traditional “expectations theory, ” we show that these findings are not puzzling relative to a large class of richer dynamic term structure models. Specifically, we are able to match all of the key empirical findings reported by Fama and Bliss and Campbell and Shiller, among others, within large subclasses of affine and quadraticGaussian term structure models. Additionally, we show that certain “riskpremium adjusted ” projections of changes in yields on the slope of the yield curve recover the coefficients of unity predicted by the models. Key to this matching are parameterizations of the market prices of risk that let the risk factors affect the market prices of risk directly, and not only through the factor volatilities. The risk premiums have a simple form consistent with Fama’s findings on the predictability of forward rates, and are also shown to be consistent with interest rate, feedback rules used by a monetary authority in setting monetary policy.
Term Structure of Interest Rates with Regime Shifts
 Journal of Finance
, 2002
"... We develop a term structure model where the short interest rate and the market price of risks are subject to discrete regime shifts. Empirical evidence from efficient method of moments estimation provides considerable support for the regime shifts model. Standard models, which include affine specifi ..."
Abstract

Cited by 79 (1 self)
 Add to MetaCart
We develop a term structure model where the short interest rate and the market price of risks are subject to discrete regime shifts. Empirical evidence from efficient method of moments estimation provides considerable support for the regime shifts model. Standard models, which include affine specifications with up to three factors, are sharply rejected in the data. Our diagnostics show that only the regime shifts model can account for the welldocumented violations of the expectations hypothesis, the observed conditional volatility, and the conditional correlation across yields. We find that regimes are intimately related to business cycles. MANY PAPERS DOCUMENT THAT THE UNIVARIATE short interest rate process can be reasonably well modeled in the time series as a regime switching process ~see Hamilton ~1988!, Garcia and Perron ~1996!!. In addition to this statistical evidence, there are economic reasons as well to believe that regime shifts are important to understanding the behavior of the entire yield curve. For example, business cycle expansion and contraction “regimes ” potentially
"Peso Problem" Explanations for Term Structure Anomalies
, 1997
"... We examine the empirical evidence on the expectations hypothesis of the term structure of interest rates in the United States, the United Kingdom, and Germany using the CampbellShiller (1991) regressions and a vectorautoregressive methodology. We argue that anomalies in the U.S. term structure, do ..."
Abstract

Cited by 76 (13 self)
 Add to MetaCart
We examine the empirical evidence on the expectations hypothesis of the term structure of interest rates in the United States, the United Kingdom, and Germany using the CampbellShiller (1991) regressions and a vectorautoregressive methodology. We argue that anomalies in the U.S. term structure, documented by Campbell and Shiller (1991), may be due to a generalized peso problem in which a highinterest rate regime occuued less frequently in the sample of U.S. data than was rationally anticipated. We formalize this idea as a regimeswitching model of shortterm interest rates estimated with data from seven countries. Technically, this model extends recent research on regimeswitching models with statedependent transitions to a crosssectional setting. Use of the small sample distributions generated by the regimeswitching model for inference considerably weakens the evidence against the expectations hypothesis, but it remains somewhat implausible that our datagenerating process produced the U.S. data. However, a model that combines moderate timevariation in term premiums with pesoproblem effects is largely consistent with term structure
Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles in MacroFinance. Unpublished working paper
, 2010
"... This paper incorporates a timevarying severity of disasters into the hypothesis proposed by Rietz (1988) and Barro (2006) that risk premia result from the possibility of rare large disasters. During a disaster an asset’s fundamental value falls by a timevarying amount. This in turn generates time ..."
Abstract

Cited by 74 (5 self)
 Add to MetaCart
This paper incorporates a timevarying severity of disasters into the hypothesis proposed by Rietz (1988) and Barro (2006) that risk premia result from the possibility of rare large disasters. During a disaster an asset’s fundamental value falls by a timevarying amount. This in turn generates timevarying risk premia and thus volatile asset prices and return predictability. Using the recent technique of linearitygenerating processes, the model is tractable and all prices are exactly solved in closed form. In this paper’s framework, the following empirical regularities can be understood quantitatively: (i) equity premium puzzle; (ii) riskfree rate puzzle; (iii) excess volatility puzzle; (iv) predictability of aggregate stock market returns with pricedividend ratios; (v) often greater explanatory power of characteristics than covariances for asset returns; (vi) upward sloping nominal yield curve; (vii) predictability of future bond excess returns and long term rates via the slope of the yield curve; (viii) corporate bond spread puzzle; (ix) high price of deep outofthemoney puts; and (x) high put prices being followed by high stock returns. The calibration passes a variance bound test, as normaltimes market volatility is consistent with the wide dispersion of disaster outcomes in the historical record. The model also extends to EpsteinZinWeil preferences and to a setting with many factors.
A ConsumptionBased Model of the Term Structure of Interest Rates
, 2004
"... This paper proposes a consumptionbased model that can account for many features of the nominal term structure of interest rates. The driving force behind the model is a timevarying price of risk generated by external habit. Nominal bonds depend on past consumption growth through habit and on expec ..."
Abstract

Cited by 71 (4 self)
 Add to MetaCart
This paper proposes a consumptionbased model that can account for many features of the nominal term structure of interest rates. The driving force behind the model is a timevarying price of risk generated by external habit. Nominal bonds depend on past consumption growth through habit and on expected inflation. When calibrated to data on consumption, inflation, and the average level of bond yields, the model produces realistic volatility of bond yields and can explain key aspects of the expectations puzzle documented by Campbell and Shiller (1991) and Fama and Bliss (1987). When actual consumption and inflation data are fed into the model, the model is shown to account for many of the short and longrun fluctuations in the shortterm interest rate and the yield spread. At the same time, the model captures the high equity premium and
The macroeconomy and the yield curve: a dynamic latent factor approach
 Journal of Econometrics
, 2006
"... Abstract: We estimate a model that summarizes the yield curve using latent factors (specifically, level, slope, and curvature) and also includes observable macroeconomic variables (specifically, real activity, inflation, and the monetary policy instrument). Our goal is to provide a characterization ..."
Abstract

Cited by 69 (12 self)
 Add to MetaCart
Abstract: We estimate a model that summarizes the yield curve using latent factors (specifically, level, slope, and curvature) and also includes observable macroeconomic variables (specifically, real activity, inflation, and the monetary policy instrument). Our goal is to provide a characterization of the dynamic interactions between the macroeconomy and the yield curve. We find strong evidence of the effects of macro variables on future movements in the yield curve and evidence for a reverse influence as well. We also relate our results to the expectations hypothesis.