Results 1  10
of
162
Snopt: An SQP Algorithm For LargeScale Constrained Optimization
, 1997
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 384 (22 self)
 Add to MetaCart
(Show Context)
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available, and that the constraint gradients are sparse.
Numerical solution of saddle point problems
 ACTA NUMERICA
, 2005
"... Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has b ..."
Abstract

Cited by 199 (28 self)
 Add to MetaCart
(Show Context)
Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has been a surge of interest in saddle point problems, and numerous solution techniques have been proposed for solving this type of systems. The aim of this paper is to present and discuss a large selection of solution methods for linear systems in saddle point form, with an emphasis on iterative methods for large and sparse problems.
LOQO: An interior point code for quadratic programming
, 1994
"... ABSTRACT. This paper describes a software package, called LOQO, which implements a primaldual interiorpoint method for general nonlinear programming. We focus in this paper mainly on the algorithm as it applies to linear and quadratic programming with only brief mention of the extensions to convex ..."
Abstract

Cited by 166 (9 self)
 Add to MetaCart
(Show Context)
ABSTRACT. This paper describes a software package, called LOQO, which implements a primaldual interiorpoint method for general nonlinear programming. We focus in this paper mainly on the algorithm as it applies to linear and quadratic programming with only brief mention of the extensions to convex and general nonlinear programming, since a detailed paper describing these extensions were published recently elsewhere. In particular, we emphasize the importance of establishing and maintaining symmetric quasidefiniteness of the reduced KKT system. We show that the industry standard MPS format can be nicely formulated in such a way to provide quasidefiniteness. Computational results are included for a variety of linear and quadratic programming problems. 1.
Interiorpoint methods for nonconvex nonlinear programming: Filter methods and merit functions
 Computational Optimization and Applications
, 2002
"... Abstract. In this paper, we present global and local convergence results for an interiorpoint method for nonlinear programming and analyze the computational performance of its implementation. The algorithm uses an ℓ1 penalty approach to relax all constraints, to provide regularization, and to bound ..."
Abstract

Cited by 96 (8 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper, we present global and local convergence results for an interiorpoint method for nonlinear programming and analyze the computational performance of its implementation. The algorithm uses an ℓ1 penalty approach to relax all constraints, to provide regularization, and to bound the Lagrange multipliers. The penalty problems are solved using a simplified version of Chen and Goldfarb’s strictly feasible interiorpoint method [12]. The global convergence of the algorithm is proved under mild assumptions, and local analysis shows that it converges Qquadratically for a large class of problems. The proposed approach is the first to simultaneously have all of the following properties while solving a general nonconvex nonlinear programming problem: (1) the convergence analysis does not assume boundedness of dual iterates, (2) local convergence does not require the Linear Independence Constraint Qualification, (3) the solution of the penalty problem is shown to locally converge to optima that may not satisfy the KarushKuhnTucker conditions, and (4) the algorithm is applicable to mathematical programs with equilibrium constraints. Numerical testing on a set of general nonlinear programming problems, including degenerate problems and infeasible problems, confirm the theoretical results. We also provide comparisons to a highlyefficient nonlinear solver and thoroughly analyze the effects of enforcing theoretical convergence guarantees on the computational performance of the algorithm. 1.
Constraint Preconditioning for Indefinite Linear Systems
 SIAM J. Matrix Anal. Appl
, 2000
"... . The problem of nding good preconditioners for the numerical solution of indenite linear systems is considered. Special emphasis is put on preconditioners that have a 2 2 block structure and which incorporate the (1; 2) and (2; 1) blocks of the original matrix. Results concerning the spectrum and ..."
Abstract

Cited by 81 (12 self)
 Add to MetaCart
(Show Context)
. The problem of nding good preconditioners for the numerical solution of indenite linear systems is considered. Special emphasis is put on preconditioners that have a 2 2 block structure and which incorporate the (1; 2) and (2; 1) blocks of the original matrix. Results concerning the spectrum and form of the eigenvectors of the preconditioned matrix and its minimum polynomial are given. The consequences of these results are considered for a variety of Krylov subspace methods. Numerical experiments validate these conclusions. Key words. preconditioning, indenite matrices, Krylov subspace methods AMS subject classications. 65F10, 65F15, 65F50 1. Introduction. In this paper, we are concerned with investigating a new class of preconditioners for indenite systems of linear equations of a sort which arise in constrained optimization as well as in leastsquares, saddlepoint and Stokes problems. We attempt to solve the indenite linear system A B T B 0  {z } A x 1 x...
MCPLIB: A Collection of Nonlinear Mixed Complementarity Problems
 Optimization Methods and Software
, 1994
"... The origins and some motivational details of a collection of nonlinear mixed complementarity problems are given. This collection serves two purposes. Firstly, it gives a uniform basis for testing currently available and new algorithms for mixed complementarity problems. Function and Jacobian evaluat ..."
Abstract

Cited by 80 (31 self)
 Add to MetaCart
(Show Context)
The origins and some motivational details of a collection of nonlinear mixed complementarity problems are given. This collection serves two purposes. Firstly, it gives a uniform basis for testing currently available and new algorithms for mixed complementarity problems. Function and Jacobian evaluations for the resulting problems are provided via a GAMS interface, making thorough testing of algorithms on practical complementarity problems possible. Secondly, it gives examples of how to formulate many popular problem formats as mixed complementarity problems and how to describe the resulting problems in GAMS format. We demonstrate the ease and power of formulating practical models in the MCP format. Given these examples, it is hoped that this collection will grow to include many problems that test complementarity algorithms more fully. The collection is available by anonymous ftp. Computational results using the PATH solver covering all of these problems are described. 1 Introduction R...
An interior point algorithm for large scale nonlinear programming
 SIAM Journal on Optimization
, 1999
"... The design and implementation of a new algorithm for solving large nonlinear programming problems is described. It follows a barrier approach that employs sequential quadratic programming and trust regions to solve the subproblems occurring in the iteration. Both primal and primaldual versions of t ..."
Abstract

Cited by 78 (18 self)
 Add to MetaCart
The design and implementation of a new algorithm for solving large nonlinear programming problems is described. It follows a barrier approach that employs sequential quadratic programming and trust regions to solve the subproblems occurring in the iteration. Both primal and primaldual versions of the algorithm are developed, and their performance is illustrated in a set of numerical tests. Key words: constrained optimization, interior point method, largescale optimization, nonlinear programming, primal method, primaldual method, successive quadratic programming, trust region method.
A New Trust Region Algorithm For Equality Constrained Optimization
, 1995
"... . We present a new trust region algorithm for solving nonlinear equality constrained optimization problems. At each iterate a change of variables is performed to improve the ability of the algorithm to follow the constraint level sets. The algorithm employs L 2 penalty functions for obtaining global ..."
Abstract

Cited by 53 (7 self)
 Add to MetaCart
. We present a new trust region algorithm for solving nonlinear equality constrained optimization problems. At each iterate a change of variables is performed to improve the ability of the algorithm to follow the constraint level sets. The algorithm employs L 2 penalty functions for obtaining global convergence. Under certain assumptions we prove that this algorithm globally converges to a point satisfying the second order necessary optimality conditions; the local convergence rate is quadratic. Results of preliminary numerical experiments are presented. 1. Introduction. We consider the equality constrained optimization problem minimize f(x) subject to c(x) = 0 (1:1) where x 2 ! n and f : ! n ! !, and c : ! n ! ! m are smooth nonlinear functions. Problem (1.1) is often solved by successive quadratic programming (SQP) methods. At a current point x k 2 ! n , SQP methods determine a search direction d k by solving a quadratic programming problem minimize rf(x k ) T d + 1 2 ...
A Subspace, Interior, and Conjugate Gradient Method for LargeScale BoundConstrained Minimization Problems
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1999
"... A subspace adaptation of the ColemanLi trust region and interior method is proposed for solving largescale boundconstrained minimization problems. This method can be implemented with either sparse Cholesky factorization or conjugate gradient computation. Under reasonable conditions the convergenc ..."
Abstract

Cited by 46 (1 self)
 Add to MetaCart
(Show Context)
A subspace adaptation of the ColemanLi trust region and interior method is proposed for solving largescale boundconstrained minimization problems. This method can be implemented with either sparse Cholesky factorization or conjugate gradient computation. Under reasonable conditions the convergence properties of this subspace trust region method are as strong as those of its fullspace version. Computational
LBFGSB  Fortran Subroutines for LargeScale Bound Constrained Optimization
, 1994
"... LBFGSB is a limited memory algorithm for solving large nonlinear optimization problems subject to simple bounds on the variables. It is intended for problems in which information on the Hessian matrix is di cult to obtain, or for large dense problems. LBFGSB can also be used for unconstrained pr ..."
Abstract

Cited by 43 (2 self)
 Add to MetaCart
(Show Context)
LBFGSB is a limited memory algorithm for solving large nonlinear optimization problems subject to simple bounds on the variables. It is intended for problems in which information on the Hessian matrix is di cult to obtain, or for large dense problems. LBFGSB can also be used for unconstrained problems, and in this case performs similarly to its predecessor, algorithm LBFGS (Harwell routine VA15). The algorithm is implemented in Fortran 77.