Results 1  10
of
34
Global Optimization of MixedInteger Nonlinear Programs: A Theoretical and Computational Study
 Mathematical Programming
, 2003
"... This work addresses the development of an efficient solution strategy for obtaining global optima of continuous, integer, and mixedinteger nonlinear programs. Towards this end, we develop novel relaxation schemes, range reduction tests, and branching strategies which we incorporate into the prototy ..."
Abstract

Cited by 51 (1 self)
 Add to MetaCart
This work addresses the development of an efficient solution strategy for obtaining global optima of continuous, integer, and mixedinteger nonlinear programs. Towards this end, we develop novel relaxation schemes, range reduction tests, and branching strategies which we incorporate into the prototypical branchandbound algorithm. In the theoretical...
A Comparison of Complete Global Optimization Solvers
"... Results are reported of testing a number of existing state of the art solvers for global constrained optimization and constraint satisfaction on a set of over 1000 test problems in up to 1000 variables. ..."
Abstract

Cited by 23 (4 self)
 Add to MetaCart
Results are reported of testing a number of existing state of the art solvers for global constrained optimization and constraint satisfaction on a set of over 1000 test problems in up to 1000 variables.
Global minimization using an Augmented Lagrangian method with variable lowerlevel constraints
, 2007
"... A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the εkglobal minimization of the Augmented Lagrangian with simple constraints, where εk → ε. Global c ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the εkglobal minimization of the Augmented Lagrangian with simple constraints, where εk → ε. Global convergence to an εglobal minimizer of the original problem is proved. The subproblems are solved using the αBB method. Numerical experiments are presented.
Constraint partitioning in penalty formulations for solving temporal planning problems
 Artificial Intelligence
, 2006
"... Abstract In this paper, we study the partitioning of constraints in temporal planning problems formulated as mixedinteger nonlinear programming (MINLP) problems. Constraint partitioning is ..."
Abstract

Cited by 17 (12 self)
 Add to MetaCart
Abstract In this paper, we study the partitioning of constraints in temporal planning problems formulated as mixedinteger nonlinear programming (MINLP) problems. Constraint partitioning is
Global Optimization of MixedInteger Nonlinear Problems
 AIChE J
"... Two novel deterministic global optimization algorithms for nonconvex mixedinteger problems (MINLPs) are proposed, using the advances of the ffBB algorithm for nonconvex NLPs Adjiman et al. (1998a). The Special Structure MixedInteger ffBB algorithm (SMINffBB addresses problems with nonconvexities ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
Two novel deterministic global optimization algorithms for nonconvex mixedinteger problems (MINLPs) are proposed, using the advances of the ffBB algorithm for nonconvex NLPs Adjiman et al. (1998a). The Special Structure MixedInteger ffBB algorithm (SMINffBB addresses problems with nonconvexities in the continuous variables and linear and mixedbilinear participation of the binary variables. The General Structure MixedInteger ffBB algorithm (GMINffBB), is applicable to a very general class of problems for which the continuous relaxation is twice continuously differentiable. Both algorithms are developed using the concepts of branchandbound, but they differ in their approach to each of the required steps. The SMINffBB algorithm is based on the convex underestimation of the continuous functions while the GMINffBB algorithm is centered around the convex relaxation of the entire problem. Both algorithms rely on optimization or interval based variable bound updates to enhance effici...
Reformulation and Convex Relaxation Techniques for Global Optimization
 4OR
, 2004
"... Many engineering optimization problems can be formulated as nonconvex nonlinear programming problems (NLPs) involving a nonlinear objective function subject to nonlinear constraints. Such problems may exhibit more than one locally optimal point. However, one is often solely or primarily interested i ..."
Abstract

Cited by 9 (7 self)
 Add to MetaCart
Many engineering optimization problems can be formulated as nonconvex nonlinear programming problems (NLPs) involving a nonlinear objective function subject to nonlinear constraints. Such problems may exhibit more than one locally optimal point. However, one is often solely or primarily interested in determining the globally optimal point. This thesis is concerned with techniques for establishing such global optima using spatial BranchandBound (sBB) algorithms.
MixedInteger Nonlinear Programming Models and Algorithms for LargeScale Supply
 Chain Design with Stochastic Inventory Management. Industrial & Engineering Chemistry Research 2008
"... An important challenge for most chemical companies is to simultaneously consider inventory optimization and supply chain network design under demand uncertainty. This leads to a problem that requires integrating a stochastic inventory model with the supply chain network design model. This problem ca ..."
Abstract

Cited by 6 (5 self)
 Add to MetaCart
An important challenge for most chemical companies is to simultaneously consider inventory optimization and supply chain network design under demand uncertainty. This leads to a problem that requires integrating a stochastic inventory model with the supply chain network design model. This problem can be formulated as a large scale combinatorial optimization model that includes nonlinear terms. Since these models are very difficult to solve, they require exploiting their properties and developing special solution techniques to reduce the computational effort. In this work, we analyze the properties of the basic model and develop solution techniques for a joint supply chain network design and inventory management model for a given product. The model is formulated as a nonlinear integer programming problem. By reformulating it as a mixedinteger nonlinear programming (MINLP) problem and using an associated convex relaxation model for initialization, we first propose a heuristic method to quickly obtain good quality solutions. Further, a decomposition algorithm based on Lagrangean relaxation is developed for obtaining global or nearglobal optimal solutions. Extensive computational examples with up to 150 distribution centers and 150 retailers are presented to illustrate the performance of the algorithms and to compare them with the fullspace solution. To whom all correspondence should be addressed.
Solving Nonlinear Constrained Optimization Problems Through Constraint Partitioning
, 2005
"... In this dissertation, we propose a general approach that can significantly reduce the complexity in solving discrete, continuous, and mixed constrained nonlinear optimization (NLP) problems. A key observation we have made is that most applicationbased NLPs have structured arrangements of constrai ..."
Abstract

Cited by 5 (5 self)
 Add to MetaCart
In this dissertation, we propose a general approach that can significantly reduce the complexity in solving discrete, continuous, and mixed constrained nonlinear optimization (NLP) problems. A key observation we have made is that most applicationbased NLPs have structured arrangements of constraints. For example, constraints in AI planning are often localized into coherent groups based on their corresponding subgoals. In engineering design problems, such as the design of a power plant, most constraints exhibit a spatial structure based on the layout of the physical components. In optimal control applications, constraints are localized by stages or time. We have developed techniques to exploit these constraint structures by partitioning the constraints into subproblems related by global constraints. Constraint partitioning leads to much relaxed subproblems that are significantly easier to solve. However, there exist global constraints relating multiple subproblems that must be resolved. Previous methods cannot exploit such structures using constraint partitioning because they cannot resolve inconsistent global constraints efficiently.
On convex relaxations of quadrilinear terms
, 2009
"... The best known method to find exact or at least εapproximate solutions to polynomial programming problems is the spatial BranchandBound algorithm, which rests on computing lower bounds to the value of the objective function to be minimized on each region that it explores. These lower bounds are o ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
The best known method to find exact or at least εapproximate solutions to polynomial programming problems is the spatial BranchandBound algorithm, which rests on computing lower bounds to the value of the objective function to be minimized on each region that it explores. These lower bounds are often computed by solving convex relaxations of the original program. Although convex envelopes are explicitly known (via linear inequalities) for bilinear and trilinear terms on arbitrary boxes, such a description is unknown, in general, for multilinear terms of higher order. In this paper, we study convex relaxations of quadrilinear terms. We exploit associativity to rewrite such terms as products of bilinear and trilinear terms. Using a general technique, we establish that, any relaxation for klinear terms that employs a successive use of relaxing bilinear terms (via the bilinear convex envelope) can be improved by employing instead a relaxation of a trilinear term (via the trilinear convex envelope). We present a computational analysis which helps establish which relaxations are strictly tighter, and we apply our findings to two wellstudied applications: the Molecular Distance Geometry Problem and the HartreeFock Problem.