Results 1 
6 of
6
Support vector machines for speech recognition
 Proceedings of the International Conference on Spoken Language Processing
, 1998
"... Statistical techniques based on hidden Markov Models (HMMs) with Gaussian emission densities have dominated signal processing and pattern recognition literature for the past 20 years. However, HMMs trained using maximum likelihood techniques suffer from an inability to learn discriminative informati ..."
Abstract

Cited by 74 (2 self)
 Add to MetaCart
Statistical techniques based on hidden Markov Models (HMMs) with Gaussian emission densities have dominated signal processing and pattern recognition literature for the past 20 years. However, HMMs trained using maximum likelihood techniques suffer from an inability to learn discriminative information and are prone to overfitting and overparameterization. Recent work in machine learning has focused on models, such as the support vector machine (SVM), that automatically control generalization and parameterization as part of the overall optimization process. In this paper, we show that SVMs provide a significant improvement in performance on a static pattern classification task based on the Deterding vowel data. We also describe an application of SVMs to large vocabulary speech recognition, and demonstrate an improvement in error rate on a continuous alphadigit task (OGI Aphadigits) and a large vocabulary conversational speech task (Switchboard). Issues related to the development and optimization of an SVM/HMM hybrid system are discussed.
Graphical models and automatic speech recognition
 Mathematical Foundations of Speech and Language Processing
, 2003
"... Graphical models provide a promising paradigm to study both existing and novel techniques for automatic speech recognition. This paper first provides a brief overview of graphical models and their uses as statistical models. It is then shown that the statistical assumptions behind many pattern recog ..."
Abstract

Cited by 67 (13 self)
 Add to MetaCart
Graphical models provide a promising paradigm to study both existing and novel techniques for automatic speech recognition. This paper first provides a brief overview of graphical models and their uses as statistical models. It is then shown that the statistical assumptions behind many pattern recognition techniques commonly used as part of a speech recognition system can be described by a graph – this includes Gaussian distributions, mixture models, decision trees, factor analysis, principle component analysis, linear discriminant analysis, and hidden Markov models. Moreover, this paper shows that many advanced models for speech recognition and language processing can also be simply described by a graph, including many at the acoustic, pronunciation, and languagemodeling levels. A number of speech recognition techniques born directly out of the graphicalmodels paradigm are also surveyed. Additionally, this paper includes a novel graphical analysis regarding why derivative (or delta) features improve hidden Markov modelbased speech recognition by improving structural discriminability. It also includes an example where a graph can be used to represent language model smoothing constraints. As will be seen, the space of models describable by a graph is quite large. A thorough exploration of this space should yield techniques that ultimately will supersede the hidden Markov model.
Natural Statistical Models for Automatic Speech Recognition
, 1999
"... The performance of stateoftheart speech recognition systems is still far worse than that of humans. This is partly caused by the use of poor statistical models. In a general statistical pattern classification task, the probabilistic models should represent the statistical structure unique to an ..."
Abstract

Cited by 53 (20 self)
 Add to MetaCart
The performance of stateoftheart speech recognition systems is still far worse than that of humans. This is partly caused by the use of poor statistical models. In a general statistical pattern classification task, the probabilistic models should represent the statistical structure unique to and distinguishing those objects to be classified. In many cases, however, model families are selected without verification of their ability to represent vital discriminative properties. For example, Hidden Markov Models (HMMs) are frequently used in automatic speech recognition systems even though they possess conditional independence properties that might cause inaccuracies when modeling and classifying speech signals. In this work, a new method for automatic speech recognition is developed where the natural statistical properties of speech are used to determine the probabilistic model. Starting from an HMM, new models are created by adding dependencies only if they are not already well captured by the HMM, and only if they increase the
What HMMs can do
, 2002
"... Since their inception over thirty years ago, hidden Markov models (HMMs) have have become the predominant methodology for automatic speech recognition (ASR) systems — today, most stateoftheart speech systems are HMMbased. There have been a number of ways to explain HMMs and to list their capabil ..."
Abstract

Cited by 30 (4 self)
 Add to MetaCart
Since their inception over thirty years ago, hidden Markov models (HMMs) have have become the predominant methodology for automatic speech recognition (ASR) systems — today, most stateoftheart speech systems are HMMbased. There have been a number of ways to explain HMMs and to list their capabilities, each of these ways having both advantages and disadvantages. In an effort to better understand what HMMs can do, this tutorial analyzes HMMs by exploring a novel way in which an HMM can be defined, namely in terms of random variables and conditional independence assumptions. We prefer this definition as it allows us to reason more throughly about the capabilities of HMMs. In particular, it is possible to deduce that there are, in theory at least, no theoretical limitations to the class of probability distributions representable by HMMs. This paper concludes that, in search of a model to supersede the HMM for ASR, we should rather than trying to correct for HMM limitations in the general case, new models should be found based on their potential for better parsimony, computational requirements, and noise insensitivity.
Discriminative Training of Hidden Markov Models
, 1998
"... vi Abbreviations vii Notation viii 1 Introduction 1 2 Hidden Markov Models 4 2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 HMM Modelling Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 HMM Topology . . . . . . . . . ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
vi Abbreviations vii Notation viii 1 Introduction 1 2 Hidden Markov Models 4 2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 HMM Modelling Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 HMM Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Finding the Best Transcription . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.5 Setting the Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Objective Functions 19 3.1 Properties of Maximum Likelihood Estimators . . . . . . . . . . . . . . . . . . . 19 3.2 Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 Maximum Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Frame Discrimination . . . . . . . . . . . . . . . . ....
DISCRIMINATIVE TRAINING AND MAXIMUM LIKELIHOOD DETECTOR FOR SPEAKER IDENTIFICATION
"... This article describes a new approach for cues discrimination between speakers addressed to a speaker identification task. To this end, we make use of elements of decision theory. We propose to decompose the conventional feature space (MFCCs) into two subspaces which carry information about discrimi ..."
Abstract
 Add to MetaCart
This article describes a new approach for cues discrimination between speakers addressed to a speaker identification task. To this end, we make use of elements of decision theory. We propose to decompose the conventional feature space (MFCCs) into two subspaces which carry information about discriminative and confusable sections of the speech signal. The method is based on the idea that, instead of adapting the speakers models to a new test environment, we require the test utterance to fit the speakers models environment. Discriminative sections of training speech are used to estimate the probability density function (pdf) of a discriminative world model (DM), and confusable sections to estimate the probability density function of a confusion world model (CM). The two models are then used as a maximum likelihood detector (filter) at the input of the recogniser. The method was experimented on highly mismatched telephone speech and achieves a considerable improvement (averaging 16 % gain in performance) over the baseline GMM system. 1.