Results 1  10
of
24
Complexity and Expressive Power of Logic Programming
, 1997
"... This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results ..."
Abstract

Cited by 281 (57 self)
 Add to MetaCart
This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results on plain logic programming (pure Horn clause programs), more recent results on various important extensions of logic programming are surveyed. These include logic programming with different forms of negation, disjunctive logic programming, logic programming with equality, and constraint logic programming. The complexity of the unification problem is also addressed.
Computing With FirstOrder Logic
, 1995
"... We study two important extensions of firstorder logic (FO) with iteration, the fixpoint and while queries. The main result of the paper concerns the open problem of the relationship between fixpoint and while: they are the same iff ptime = pspace. These and other expressibility results are obtaine ..."
Abstract

Cited by 53 (13 self)
 Add to MetaCart
We study two important extensions of firstorder logic (FO) with iteration, the fixpoint and while queries. The main result of the paper concerns the open problem of the relationship between fixpoint and while: they are the same iff ptime = pspace. These and other expressibility results are obtained using a powerful normal form for while which shows that each while computation over an unordered domain can be reduced to a while computation over an ordered domain via a fixpoint query. The fixpoint query computes an equivalence relation on tuples which is a congruence with respect to the rest of the computation. The same technique is used to show that equivalence of tuples and structures with respect to FO formulas with bounded number of variables is definable in fixpoint. Generalizing fixpoint and while, we consider more powerful languages which model arbitrary computation interacting with a database using a finite set of FO queries. Such computation is modeled by a relational machine...
Fixpoint Logics, Relational Machines, and Computational Complexity
 In Structure and Complexity
, 1993
"... We establish a general connection between fixpoint logic and complexity. On one side, we have fixpoint logic, parameterized by the choices of 1storder operators (inflationary or noninflationary) and iteration constructs (deterministic, nondeterministic, or alternating). On the other side, we have t ..."
Abstract

Cited by 36 (5 self)
 Add to MetaCart
We establish a general connection between fixpoint logic and complexity. On one side, we have fixpoint logic, parameterized by the choices of 1storder operators (inflationary or noninflationary) and iteration constructs (deterministic, nondeterministic, or alternating). On the other side, we have the complexity classes between P and EXPTIME. Our parameterized fixpoint logics capture the complexity classes P, NP, PSPACE, and EXPTIME, but equality is achieved only over ordered structures. There is, however, an inherent mismatch between complexity and logic  while computational devices work on encodings of problems, logic is applied directly to the underlying mathematical structures. To overcome this mismatch, we develop a theory of relational complexity, which bridges tha gap between standard complexity and fixpoint logic. On one hand, we show that questions about containments among standard complexity classes can be translated to questions about containments among relational complex...
The Expressive Power of Higherorder Types or, Life without CONS
, 2001
"... Compare firstorder functional programs with higherorder programs allowing functions as function parameters. Can the the first program class solve fewer problems than the second? The answer is no: both classes are Turing complete, meaning that they can compute all partial recursive functions. In pa ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
Compare firstorder functional programs with higherorder programs allowing functions as function parameters. Can the the first program class solve fewer problems than the second? The answer is no: both classes are Turing complete, meaning that they can compute all partial recursive functions. In particular, higherorder values may be firstorder simulated by use of the list constructor ‘cons’ to build function closures. This paper uses complexity theory to prove some expressivity results about small programming languages that are less than Turing complete. Complexity classes of decision problems are used to characterize the expressive power of functional programming language features. An example: secondorder programs are more powerful than firstorder, since a function f of type [Bool]〉Bool is computable by a consfree firstorder functional program if and only if f is in PTIME, whereas f is computable by a consfree secondorder program if and only if f is in EXPTIME. Exact characterizations are given for those problems of type [Bool]〉Bool solvable by programs with several combinations of operations on data: presence or absence of constructors; the order of data values: 0, 1, or higher; and program control structures: general recursion, tail recursion, primitive recursion.
Higher Order Logic
 In Handbook of Logic in Artificial Intelligence and Logic Programming
, 1994
"... Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Definin ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Defining data types : : : : : : : : : : : : : : : : : : : : : 6 2.4 Describing processes : : : : : : : : : : : : : : : : : : : : : 8 2.5 Expressing convergence using second order validity : : : : : : : : : : : : : : : : : : : : : : : : : 9 2.6 Truth definitions: the analytical hierarchy : : : : : : : : 10 2.7 Inductive definitions : : : : : : : : : : : : : : : : : : : : : 13 3 Canonical semantics of higher order logic : : : : : : : : : : : : 15 3.1 Tarskian semantics of second order logic : : : : : : : : : 15 3.2 Function and re
Local Normal Forms for FirstOrder Logic with Applications to Games and Automata
 DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE
, 1998
"... ..."
Strong and uniform equivalence in answerset programming: Characterizations and complexity results for the nonground case
 In Proc. AAAI 2005
, 2005
"... Recent research in nonmonotonic logic programming under the answerset semantics studies different notions of equivalence. In particular, strong and uniform equivalence are proposed as useful tools for optimizing (parts of) a logic program. While previous research mainly addressed propositional (i.e ..."
Abstract

Cited by 16 (15 self)
 Add to MetaCart
Recent research in nonmonotonic logic programming under the answerset semantics studies different notions of equivalence. In particular, strong and uniform equivalence are proposed as useful tools for optimizing (parts of) a logic program. While previous research mainly addressed propositional (i.e., ground) programs, we deal here with the more general case of nonground programs, and provide semantical characterizations capturing the essence of equivalence, generalizing the concepts of SEmodels and UEmodels, respectively, as originally introduced for propositional programs. We show that uniform equivalence is undecidable, and we give decidability results and precise complexity bounds for strong equivalence (thereby correcting a previous complexity bound for strong equivalence from the literature) as well as for uniform equivalence for finite vocabularies.
Foundations of rulebased query answering
 IN REASONING WEB, INT. SUMMER SCHOOL, LNCS
, 2007
"... This survey article introduces into the essential concepts and methods underlying rulebased query languages. It covers four complementary areas: declarative semantics based on adaptations of mathematical logic, operational semantics, complexity and expressive power, and optimisation of query evalua ..."
Abstract

Cited by 15 (8 self)
 Add to MetaCart
This survey article introduces into the essential concepts and methods underlying rulebased query languages. It covers four complementary areas: declarative semantics based on adaptations of mathematical logic, operational semantics, complexity and expressive power, and optimisation of query evaluation. The treatment of these areas is foundationoriented, the foundations having resulted from over four decades of research in the logic programming and database communities on combinations of query languages and rules. These results have later formed the basis for conceiving, improving, and implementing several Web and Semantic Web technologies, in particular query languages such as XQuery or SPARQL for querying relational, XML, and RDF data, and rule languages like the “Rule Interchange Framework (RIF) ” currently being developed in a working group of the W3C. Coverage of the article is deliberately limited to declarative languages in a classical setting: issues such as query answering in FLogic or in description logics, or the relationship of query answering to reactive rules and events, are not addressed.
How to Define a Linear Order on Finite Models
, 1997
"... We carry out a systematic investigation of the definability of linear order on classes of finite rigid structures. We obtain upper and lower bounds for the expressibility of linear order in various logics that have been studied extensively in finite model theory, such as least fixpoint logic LFP, pa ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
We carry out a systematic investigation of the definability of linear order on classes of finite rigid structures. We obtain upper and lower bounds for the expressibility of linear order in various logics that have been studied extensively in finite model theory, such as least fixpoint logic LFP, partial fixpoint logic PFP, infinitary logic L ! 1! with a finite number of variables, as well as the closures of these logics under implicit definitions. Moreover, we show that the upper and lower bounds established here can not be made substantially tighter, unless outstanding conjectures in complexity theory are resolved at the same time. Research of L. Hella was partially supported by a grant from the University of Helsinki. y Research of Ph. Kolaitis was partially supported by a 1993 John Simon Guggenheim Fellowship and by NSF Grants No. CCR9108631, CCR9307758, and INT9024681 z Research of K. Luosto was partially supported by a grant from the Emil Aaltonen Foundation. 1 Intro...