Results 1  10
of
24
Abstract behavior types: A foundation model for components and their composition
 SCIENCE OF COMPUTER PROGRAMMING
, 2003
"... ..."
(Show Context)
A Coinductive Calculus of Component Connectors
, 2002
"... Reo is a recently introduced channelbased coordination model, wherein complex coordinators, called connectors, are compositionally built out of simpler ones. Using a more liberal notion of a channel, Reo generalises existing dataflow networks. In this paper, we present a simple and transparent sema ..."
Abstract

Cited by 70 (29 self)
 Add to MetaCart
(Show Context)
Reo is a recently introduced channelbased coordination model, wherein complex coordinators, called connectors, are compositionally built out of simpler ones. Using a more liberal notion of a channel, Reo generalises existing dataflow networks. In this paper, we present a simple and transparent semantical model for Reo, in which connectors are relations on timed data streams. Timed data streams constitute a characteristic of our model and consist of twin pairs of separate data and time streams. Furthermore, coinduction is our main reasoning principle and we use it to prove properties such as connector equivalence.
Behavioural Differential Equations: A Coinductive Calculus of Streams, Automata, and Power Series
, 2000
"... Streams, (automata and) languages, and formal power series are viewed coalgebraically. In summary, this amounts to supplying these sets with a deterministic automaton structure, which has the universal property of being final. Finality then forms the basis for both definitions and proofs by coinduct ..."
Abstract

Cited by 63 (23 self)
 Add to MetaCart
Streams, (automata and) languages, and formal power series are viewed coalgebraically. In summary, this amounts to supplying these sets with a deterministic automaton structure, which has the universal property of being final. Finality then forms the basis for both definitions and proofs by coinduction, the coalgebraic counterpart of induction. Coinductive definitions take the shape of what we have called behavioural differential equations, after Brzozowski's notion of input derivative. A calculus is developed for coinductive reasoning about all of the afore mentioned structures, closely resembling (and at times generalising) calculus from classical analysis. 2000 Mathematics Subject Classification: 68Q10, 68Q55, 68Q85 1998 ACM Computing Classification System: F.1, F.3 Keywords & Phrases: Coalgebra, automaton, finality, coinduction, stream, formal language, formal power series, differential equation, input derivative, behaviour, semiring, maxplus algebra 1 Contents 1 Introductio...
A coinductive calculus of streams
, 2005
"... We develop a coinductive calculus of streams based on the presence of a final coalgebra structure on the set of streams (infinite sequences of real numbers). The main ingredient is the notion of stream derivative, which can be used to formulate both coinductive proofs and definitions. In close analo ..."
Abstract

Cited by 36 (13 self)
 Add to MetaCart
We develop a coinductive calculus of streams based on the presence of a final coalgebra structure on the set of streams (infinite sequences of real numbers). The main ingredient is the notion of stream derivative, which can be used to formulate both coinductive proofs and definitions. In close analogy to classical analysis, the latter are presented as behavioural differential equations. A number of applications of the calculus are presented, including difference equations, analytical differential equations, continued fractions, and some problems from discrete mathematics and combinatorics.
Specifying software connectors
 1st International Colloquium on Theorectical Aspects of Computing (ICTAC’04
, 2004
"... Abstract. Orchestrating software components, often independently supplied, has assumed a central role in software construction. Actually, as relevant as components themselves, are the ways in which they can be put together to interact and cooperate in order to achieve some common goal. Such is the r ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
(Show Context)
Abstract. Orchestrating software components, often independently supplied, has assumed a central role in software construction. Actually, as relevant as components themselves, are the ways in which they can be put together to interact and cooperate in order to achieve some common goal. Such is the role of socalled software connectors: external coordination devices which ensure both the flow of data and synchronization restrictions within a component’s network. This paper introduces a new model for software connectors, based on relations extended in time, which aims to provide support for light intercomponent dependency and effective external control. 1
Coinductive Counting With Weighted Automata
, 2002
"... A general methodology is developed to compute the solution of a wide variety of basic counting problems in a uniform way: (1) the objects to be counted are enumerated by means of an infinite weighted automaton; (2) the automaton is reduced by means of the quantitative notion of stream bisimulation; ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
(Show Context)
A general methodology is developed to compute the solution of a wide variety of basic counting problems in a uniform way: (1) the objects to be counted are enumerated by means of an infinite weighted automaton; (2) the automaton is reduced by means of the quantitative notion of stream bisimulation; (3) the reduced automaton is used to compute an expression (in terms of stream constants and operators) that represents the stream of all counts.
F.S.: Coordination and composition in multiagent systems
 In: Proceedings of the 4rd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), ACM
, 2005
"... In this paper we describe a channelbased exogenous coordination language, called Reo, and discuss its application to multiagent systems. Reo supports a specific notion of compositionality for multiagent systems that enables the composition and coordination of both individual agents as well as mul ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
(Show Context)
In this paper we describe a channelbased exogenous coordination language, called Reo, and discuss its application to multiagent systems. Reo supports a specific notion of compositionality for multiagent systems that enables the composition and coordination of both individual agents as well as multiagent systems. Accordingly, a multiagent system consists of a set of individual and/or multiagent systems whose collective behavior is coordinated by a Reo expression. This coordination language can be used to specify and implement the organization of multiagent systems and their dynamic reconfiguration during system run. Categories and Subject Descriptors I.2.11 [Distributed Artificial Intelligence]: Muliagent
Coinductive counting: bisimulation in enumerative combinatorics (Extended Abstract)
 L. MOSS (ED.), THE PROC. CMCS’02, ENTCS, VOL. 65, ELSEVIER SCIENCE B.V
, 2002
"... ..."
(Show Context)
Incremental patternbased coinduction for process algebra and its Isabelle formalization
"... Abstract. We present a coinductive proof system for bisimilarity in transition systems specifiable in the de Simone SOS format. Our coinduction is incremental, in that it allows building incrementally an a priori unknown bisimulation, and patternbased, in that it works on equalities of process patt ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
(Show Context)
Abstract. We present a coinductive proof system for bisimilarity in transition systems specifiable in the de Simone SOS format. Our coinduction is incremental, in that it allows building incrementally an a priori unknown bisimulation, and patternbased, in that it works on equalities of process patterns (i.e., universally quantified equations of process terms containing process variables), thus taking advantage of equational reasoning in a “circular ” manner, inside coinductive proof loops. The proof system has been formalized and proved sound in Isabelle/HOL. 1
Contributions to the Theory of Syntax with Bindings and to Process Algebra
, 2010
"... We develop a theory of syntax with bindings, focusing on: methodological issues concerning the convenient representation of syntax; techniques for recursive definitions and inductive reasoning. Our approach consists of a combination of FOAS (FirstOrder Abstract Syntax) and HOAS (HigherOrder Abst ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
(Show Context)
We develop a theory of syntax with bindings, focusing on: methodological issues concerning the convenient representation of syntax; techniques for recursive definitions and inductive reasoning. Our approach consists of a combination of FOAS (FirstOrder Abstract Syntax) and HOAS (HigherOrder Abstract Syntax) and tries to take advantage of the best of both worlds. The connection between FOAS and HOAS follows some general patterns and is presented as a (formally certified) statement of adequacy. We also develop a general technique for proving bisimilarity in process algebra Our technique, presented as a formal proof system, is applicable to a wide range of process algebras. The proof system is incremental, in that it allows building incrementally an a priori unknown bisimulation, and patternbased, in that it works on equalities of process patterns (i.e., universally quantified equations of process terms containing process variables), thus taking advantage of equational reasoning in a “circular ” manner, inside coinductive proof loops. All the work presented here has been formalized in the Isabelle theorem prover. The formalization is performed in a general setting: arbitrary manysorted syntax with bindings and arbitrary SOSspecified process algebra in de Simone format. The usefulness of our techniques is illustrated by several formalized case studies: a development of callbyname and callbyvalue λcalculus with constants, including ChurchRosser theorems, connection with de Bruijn representation, connection with other Isabelle formalizations, HOAS representation, and contituationpassingstyle (CPS) transformation; a proof in HOAS of strong normalization for the polymorphic secondorder λcalculus (a.k.a. System F). We also indicate the outline and some details of the formal development. ii to Leili R. Marleene iii