Results 1  10
of
14
Initial algebra semantics is enough
 Proceedings, Typed Lambda Calculus and Applications
, 2007
"... Abstract. Initial algebra semantics is a cornerstone of the theory of modern functional programming languages. For each inductive data type, it provides a fold combinator encapsulating structured recursion over data of that type, a Church encoding, a build combinator which constructs data of that ty ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
Abstract. Initial algebra semantics is a cornerstone of the theory of modern functional programming languages. For each inductive data type, it provides a fold combinator encapsulating structured recursion over data of that type, a Church encoding, a build combinator which constructs data of that type, and a fold/build rule which optimises modular programs by eliminating intermediate data of that type. It has long been thought that initial algebra semantics is not expressive enough to provide a similar foundation for programming with nested types. Specifically, the folds have been considered too weak to capture commonly occurring patterns of recursion, and no Church encodings, build combinators, or fold/build rules have been given for nested types. This paper overturns this conventional wisdom by solving all of these problems. 1
Semicontinuous sized types and termination
 In Zoltán Ésik, editor, Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual Conference of the EACSL
"... Abstract. Some typebased approaches to termination use sized types: an ordinal bound for the size of a data structure is stored in its type. A recursive function over a sized type is accepted if it is visible in the type system that recursive calls occur just at a smaller size. This approach is onl ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
(Show Context)
Abstract. Some typebased approaches to termination use sized types: an ordinal bound for the size of a data structure is stored in its type. A recursive function over a sized type is accepted if it is visible in the type system that recursive calls occur just at a smaller size. This approach is only sound if the type of the recursive function is admissible, i.e., depends on the size index in a certain way. To explore the space of admissible functions in the presence of higherkinded data types and impredicative polymorphism, a semantics is developed where sized types are interpreted as functions from ordinals into sets of strongly normalizing terms. It is shown that upper semicontinuity of such functions is a sufficient semantic criterion for admissibility. To provide a syntactical criterion, a calculus for semicontinuous functions is developed. 1.
(Co)iteration for higherorder nested datatypes
 POSTCONF. PROC. OF IST WG TYPES 2ND ANN. MEETING, TYPES'02, LECT. NOTES IN COMPUT. SCI
, 2003
"... The problem of defining iteration for higherorder nested datatypes of arbitrary (finite) rank is solved within the framework of System F ω of higherorder parametric polymorphism. The proposed solution heavily relies on a general notion of monotonicity as opposed to a syntactic criterion on the sh ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
The problem of defining iteration for higherorder nested datatypes of arbitrary (finite) rank is solved within the framework of System F ω of higherorder parametric polymorphism. The proposed solution heavily relies on a general notion of monotonicity as opposed to a syntactic criterion on the shape of the type constructors such as positivity or even being polynomial. Its use is demonstrated for some rank2 heterogeneous/nested datatypes such as powerlists and de Bruijn terms with explicit substitutions. An important feature is the availability of an iterative definition of the mapping operation (the functoriality) for those rank1 type transformers (i. e., functions from types to types) arising as least fixedpoints of monotone rank2 type transformers. Strong normalization is shown by an embedding into F ω. The results dualize to greatest fixedpoints, hence to coinductive constructors with coiteration.
Generalized Iteration and Coiteration for HigherOrder Nested Datatypes
 PROC. OF FOSSACS 2003
, 2003
"... We solve the problem of extending Bird and Paterson's generalized folds for nested datatypes and its dual to inductive and coinductive constructors of arbitrarily high ranks by appropriately generalizing Mendlerstyle (co)iteration. Characteristically to Mendlerstyle schemes of disciplined (co ..."
Abstract

Cited by 8 (5 self)
 Add to MetaCart
We solve the problem of extending Bird and Paterson's generalized folds for nested datatypes and its dual to inductive and coinductive constructors of arbitrarily high ranks by appropriately generalizing Mendlerstyle (co)iteration. Characteristically to Mendlerstyle schemes of disciplined (co)recursion, the schemes we propose do not rest on notions like positivity or monotonicity of a constructor and facilitate programming in a natural and elegant style close to programming with the customary letrec construct, where the typings of the schemes, however, guarantee termination. For rank 2, a smoothened version of Bird and Paterson's generalized folds and its dual are achieved; for rank 1, the schemes instantiate to Mendler's original (re)formulation of iteration and coiteration. Several examples demonstrate the power of the approach. Strong normalization of our proposed extension of system F of higherorder parametric polymorphism is proven by a reductionpreserving embedding into pure F .
Disciplined, efficient, generalised folds for nested datatypes
 UNDER CONSIDERATION FOR PUBLICATION IN FORMAL ASPECTS OF COMPUTING
"... Nested (or nonuniform, or nonregular) datatypes have recursive definitions in which the type parameter changes. Their folds are restricted in power due to type constraints. Bird and Paterson introduced generalised folds for extra power, but at the cost of a loss of efficiency: folds may take more ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
Nested (or nonuniform, or nonregular) datatypes have recursive definitions in which the type parameter changes. Their folds are restricted in power due to type constraints. Bird and Paterson introduced generalised folds for extra power, but at the cost of a loss of efficiency: folds may take more than linear time to evaluate. Hinze introduced efficient generalised folds to counter this inefficiency, but did so in a pragmatic way: he did not provide categorical or equivalent underpinnings, so did not get the associated universal properties for manipulating folds. We combine the efficiency of Hinze’s construction with the powerful reasoning tools of Bird and Paterson’s.
Generic Operations on Nested Datatypes
, 2001
"... Nested datatypes are a generalisation of the class of regular datatypes, which includes familiar datatypes like trees and lists. They typically represent constraints on the values of regular datatypes and are therefore used to minimise the scope for programmer error. ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Nested datatypes are a generalisation of the class of regular datatypes, which includes familiar datatypes like trees and lists. They typically represent constraints on the values of regular datatypes and are therefore used to minimise the scope for programmer error.
Weaving generic programming and traversal performance
 In AOSD ’10
, 2010
"... Developing complex software requires that functions be implemented over a variety of recursively defined data structures. While the design (and modeling) of structures is itself difficult, complex data can require even more complex functions. In this paper, we introduce a declarative form of travers ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
(Show Context)
Developing complex software requires that functions be implemented over a variety of recursively defined data structures. While the design (and modeling) of structures is itself difficult, complex data can require even more complex functions. In this paper, we introduce a declarative form of traversalbased generic programming that modularizes functions over a structure using functionobjects. Our approach is supported by a library and set of generative tools, collectively called DemeterF, which are used to implement modular, adaptive functions. While our traversals support highlevel abstractions resulting in modular and extensible functions, we retain genericity, flexibility and performance through traversal generation and inlining.
Nested datatypes with generalized Mendler iteration: map fusion and the example of the representation of untyped lambda calculus with explicit flattening
, 2008
"... ..."
Generating generic functions
 In WGP ’06: Proceedings of the 2006 ACM SIGPLAN workshop on Generic programming
, 2006
"... www.cs.uu.nl ..."
(Show Context)
The Nax Language: Unifying Functional Programming and Logical Reasoning in a Language based on Mendlerstyle Recursion Schemes and Termindexed Types
"... Let us know how access to this document benefits you. ..."
(Show Context)