Results 1  10
of
47
Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Computations
, 1997
"... We prove an exponential lower bound on the length of cutting plane proofs. The proof uses an extension of a lower bound for monotone circuits to circuits which compute with real numbers and use nondecreasing functions as gates. The latter result is of independent interest, since, in particular, i ..."
Abstract

Cited by 135 (5 self)
 Add to MetaCart
We prove an exponential lower bound on the length of cutting plane proofs. The proof uses an extension of a lower bound for monotone circuits to circuits which compute with real numbers and use nondecreasing functions as gates. The latter result is of independent interest, since, in particular, it implies an exponential lower bound for some arithmetic circuits.
Interpolation Theorems, Lower Bounds for Proof Systems, and Independence Results for Bounded Arithmetic
"... A proof of the (propositional) Craig interpolation theorem for cutfree sequent calculus yields that a sequent with a cutfree proof (or with a proof with cutformulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuitsize is at most k. We ..."
Abstract

Cited by 86 (2 self)
 Add to MetaCart
A proof of the (propositional) Craig interpolation theorem for cutfree sequent calculus yields that a sequent with a cutfree proof (or with a proof with cutformulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuitsize is at most k. We give a new proof of the interpolation theorem based on a communication complexity approach which allows a similar estimate for a larger class of proofs. We derive from it several corollaries: 1. Feasible interpolation theorems for the following proof systems: (a) resolution. (b) a subsystem of LK corresponding to the bounded arithmetic theory S 2 2 (ff). (c) linear equational calculus. (d) cutting planes. 2. New proofs of the exponential lower bounds (for new formulas) (a) for resolution ([15]). (b) for the cutting planes proof system with coefficients written in unary ([4]). 3. An alternative proof of the independence result of [43] concerning the provability of circuitsize lower bounds ...
Lower Bounds for Cutting Planes Proofs with Small Coefficients
, 1995
"... We consider smallweight Cutting Planes (CP ) proofs; that is, Cutting Planes (CP ) proofs with coefficients up to P oly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP proofs, for a family of tautologies based on the cl ..."
Abstract

Cited by 77 (19 self)
 Add to MetaCart
We consider smallweight Cutting Planes (CP ) proofs; that is, Cutting Planes (CP ) proofs with coefficients up to P oly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP proofs, for a family of tautologies based on the clique function. Because Resolution is a special case of smallweight CP , our method also gives a new and simpler exponential lower bound for Resolution. We also prove the following two theorems : (1) Treelike CP proofs cannot polynomially simulate nontreelike CP proofs. (2) Treelike CP proofs and BoundeddepthFrege proofs cannot polynomially simulate each other. Our proofs also work for some generalizations of the CP proof system. In particular, they work for CP with a deduction rule, and also for proof systems that allow any formula with small communication complexity, and any set of sound rules of inference. 1 Introduction One of the most fundamental questions in pro...
Some Consequences of Cryptographical Conjectures for . . .
, 1995
"... We show that there is a pair of disjoint NPsets, whose disjointness is provable in S 1 2 and which cannot be separated by a set in P=poly, if the cryptosystem RSA is secure. Further we show that factoring and the discrete logarithm are implicitly definable in any extension of S 1 2 admittin ..."
Abstract

Cited by 74 (8 self)
 Add to MetaCart
We show that there is a pair of disjoint NPsets, whose disjointness is provable in S 1 2 and which cannot be separated by a set in P=poly, if the cryptosystem RSA is secure. Further we show that factoring and the discrete logarithm are implicitly definable in any extension of S 1 2 admitting an NP definition of primes about which it can prove that no number satisfying the definition is composite. As a corollary we obtain that the Extended Frege (EF) proof system does not admit feasible interpolation theorem unless the RSA cryptosystem is not secure, and that an extension of EF by tautologies p (p primes), formalizing that p is not composite, as additional axioms does not admit feasible interpolation theorem unless factoring and the discrete logarithm are in P=poly . The NP 6= coNP conjecture is equivalent to the statement that no propositional proof system (as defined in [6]) admits polynomial size proofs of all tautologies. However, only for few proof systems occur...
On the Weak Pigeonhole Principle
, 2001
"... We investigate the proof complexity, in (extensions of) resolution and in bounded arithmetic, of the weak pigeonhole principle and of Ramsey theorem. In particular, we link the proof complexity of these two principles. Further we give lower bounds to the width of resolution proofs and to the size of ..."
Abstract

Cited by 69 (3 self)
 Add to MetaCart
We investigate the proof complexity, in (extensions of) resolution and in bounded arithmetic, of the weak pigeonhole principle and of Ramsey theorem. In particular, we link the proof complexity of these two principles. Further we give lower bounds to the width of resolution proofs and to the size of (extensions of) treelike resolution proofs of Ramsey theorem. We establish a connection between provability of WPHP in fragments of bounded arithmetic and cryptographic assumptions (the existence of oneway functions). In particular, we show that functions violating WPHP 2n n are oneway and, on the other hand, that oneway permutations give rise to functions violating PHP n+1 n , and that strongly collisionfree families of hash functions give rise to functions violating WPHP 2n n (all in suitable models of bounded arithmetic). Further we formulate few problems and conjectures; in particular, on the structured PHP (introduced here) and on the unrelativised WPHP. The symbol WPHP m n...
An Exponential Lower Bound to the Size of Bounded Depth Frege . . .
, 1994
"... We prove lower bounds of the form exp (n ffl d ) ; ffl d ? 0; on the length of proofs of an explicit sequence of tautologies, based on the Pigeonhole Principle, in proof systems using formulas of depth d; for any constant d: This is the largest lower bound for the strongest proof system, for whic ..."
Abstract

Cited by 67 (10 self)
 Add to MetaCart
We prove lower bounds of the form exp (n ffl d ) ; ffl d ? 0; on the length of proofs of an explicit sequence of tautologies, based on the Pigeonhole Principle, in proof systems using formulas of depth d; for any constant d: This is the largest lower bound for the strongest proof system, for which any superpolynomial lower bounds are known.
Unprovability of Lower Bounds on the Circuit Size in Certain Fragments of Bounded Arithmetic
 in Izvestiya of the Russian Academy of Science, mathematics
, 1995
"... To appear in Izvestiya of the RAN We show that if strong pseudorandom generators exist then the statement “α encodes a circuit of size n (log ∗ n) for SATISFIABILITY ” is not refutable in S2 2 (α). For refutation in S1 2 (α), this is proven under the weaker assumption of the existence of generators ..."
Abstract

Cited by 54 (6 self)
 Add to MetaCart
To appear in Izvestiya of the RAN We show that if strong pseudorandom generators exist then the statement “α encodes a circuit of size n (log ∗ n) for SATISFIABILITY ” is not refutable in S2 2 (α). For refutation in S1 2 (α), this is proven under the weaker assumption of the existence of generators secure against the attack by small depth circuits, and for another system which is strong enough to prove exponential lower bounds for constantdepth circuits, this is shown without using any unproven hardness assumptions. These results can be also viewed as direct corollaries of interpolationlike theorems for certain “split versions ” of classical systems of Bounded Arithmetic introduced in this paper.
An application of boolean complexity to separation problems in bounded arithmetic
 Proc. London Math. Society
, 1994
"... We develop a method for establishing the independence of some Zf(a)formulas from S'2(a). In particular, we show that T'2(a) is not VZ*(a)conservative over S'2(a). We characterize the Z^definable functions of T2 as being precisely the functions definable as projections of polynomial local search ( ..."
Abstract

Cited by 54 (15 self)
 Add to MetaCart
We develop a method for establishing the independence of some Zf(a)formulas from S'2(a). In particular, we show that T'2(a) is not VZ*(a)conservative over S'2(a). We characterize the Z^definable functions of T2 as being precisely the functions definable as projections of polynomial local search (PLS) problems. Although it is still an open problem whether bounded arithmetic S2 is finitely axiomatizable, considerable progress on this question has been made: S2 +1 is V2f+1conservative over T'2 [3], but it is not V2!f+2conservative unless £f+2 = Ylf+2 [10], and in addition, T2 is not VZf+1conservative over S'2 unless LogSpace s? = Af+1 [8]. In particular, S2 is not finitely axiomatizable provided that the polynomialtime hierarchy does not collapse [10]. For the theory S2(a) these results imply (with some additional arguments) absolute results: S'2 + (a) is V2f+,(a)conservative but not VZf+2(a)conservative over T'2(a), and T'2(a) is not VZf+i(c*)conservative over S'2(a). Here a represents a new uninterpreted predicate symbol adjoined to the language of arithmetic which may be used in induction formulas; from a computer science perspective, a represents an oracle. In this paper we pursue this line of investigation further by showing that T'2(a) is also not V2f(a)conservative over S'2(a). This was known for / = 1, 2 by [9,17] (see also [2]), and our present proof uses a version of the pigeonhole principle similar to the arguments in [2,9]. Perhaps more importantly, we formulate a general method (Theorem 2.6) which can be used to show the unprovability of other 2f(a)formulas from S'2(a). Our methods are analogous in spirit to the proof strategy of [8]: prove a witnessing theorem to show that provability of a Zf+1(a)formula A in S'2(a) implies that it is witnessed by a function of certain complexity and then employ techniques of boolean complexity to construct an oracle a such that the formula A cannot be witnessed by a function of the prescribed complexity. Our formula A shall be 2f(a) and thus we can use the original witnessing theorem of [2]. The boolean complexity used is the same as in [8], namely Hastad's switching lemmas [6].
Lower Bounds to the Size of ConstantDepth Propositional Proofs
, 1994
"... 1 LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives : and V ; W (both of unbounded arity). Then for every d 0 and n 2, there is a set T d n of depth d sequents of total size O(n 3+d ) which are refutable in LK by depth d + 1 proof of size exp ..."
Abstract

Cited by 53 (6 self)
 Add to MetaCart
1 LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives : and V ; W (both of unbounded arity). Then for every d 0 and n 2, there is a set T d n of depth d sequents of total size O(n 3+d ) which are refutable in LK by depth d + 1 proof of size exp(O(log 2 n)) but such that every depth d refutation must have the size at least exp(n\Omega\Gamma21 ). The sets T d n express a weaker form of the pigeonhole principle. It is a fundamental problem of mathematical logic and complexity theory whether there exists a proof system for propositional logic in which every tautology has a short proof, where the length (equivalently the size) of a proof is measured essentially by the total number of symbols in it and short means polynomial in the length of the tautology. Equivalently one can ask whether for every theory T there is another theory S (both first order and reasonably axiomatized, e.g. by schemes) having the property that if a statement...
Resolution proofs of generalized pigeonhole principles
 Theoretical Computer Science
, 1988
"... We extend results of A. Haken to give an exponential lower bound on the size of resolution proofs for propositional formulas encoding a generalized pigeonhole principle. These propositional formulas express the fact that there is no oneone mapping from c · n objects to n objects when c>1. As a coro ..."
Abstract

Cited by 51 (4 self)
 Add to MetaCart
We extend results of A. Haken to give an exponential lower bound on the size of resolution proofs for propositional formulas encoding a generalized pigeonhole principle. These propositional formulas express the fact that there is no oneone mapping from c · n objects to n objects when c>1. As a corollary, resolution proof systems do not psimulate constant formula depth Frege proof systems. 1.