Results 1  10
of
11
The Complexity Of Propositional Proofs
 Bulletin of Symbolic Logic
, 1995
"... This paper of Tseitin is a landmark as the first to give nontrivial lower bounds for propositional proofs; although it predates the first papers on ..."
Abstract

Cited by 105 (2 self)
 Add to MetaCart
This paper of Tseitin is a landmark as the first to give nontrivial lower bounds for propositional proofs; although it predates the first papers on
Lower Bounds For The Polynomial Calculus
, 1998
"... We show that polynomial calculus proofs (sometimes also called Groebner proofs) of the pigeonhole principle PHP n must have degree at least (n=2)+1 over any field. This is the first nontrivial lower bound on the degree of polynomial calculus proofs obtained without using unproved complexity assumpt ..."
Abstract

Cited by 49 (5 self)
 Add to MetaCart
We show that polynomial calculus proofs (sometimes also called Groebner proofs) of the pigeonhole principle PHP n must have degree at least (n=2)+1 over any field. This is the first nontrivial lower bound on the degree of polynomial calculus proofs obtained without using unproved complexity assumptions. We also show that for some modifications of PHP n , expressible by polynomials of at most logarithmic degree, our bound can be improved to linear in the number of variables. Finally, we show that for any Boolean function f n in n variables, every polynomial calculus proof of the statement "f n cannot be computed by any circuit of size t," must have degree t=n). Loosely speaking, this means that low degree polynomial calculus proofs do not prove NP 6 P=poly.
Proof Complexity In Algebraic Systems And Bounded Depth Frege Systems With Modular Counting
"... We prove a lower bound of the form N on the degree of polynomials in a Nullstellensatz refutation of the Count q polynomials over Zm , where q is a prime not dividing m. In addition, we give an explicit construction of a degree N design for the Count q principle over Zm . As a corollary, us ..."
Abstract

Cited by 31 (9 self)
 Add to MetaCart
We prove a lower bound of the form N on the degree of polynomials in a Nullstellensatz refutation of the Count q polynomials over Zm , where q is a prime not dividing m. In addition, we give an explicit construction of a degree N design for the Count q principle over Zm . As a corollary, using Beame et al. (1994) we obtain a lower bound of the form 2 for the number of formulas in a constantdepth Frege proof of the modular counting principle Count q from instances of the counting principle Count m . We discuss
Lower Bounds for Propositional Proofs and Independence Results in Bounded Arithmetic
 Proceedings of the 23rd ICALP, Lecture Notes in Computer Science
, 1996
"... . We begin with a highly informal discussion of the role played by Bounded Arithmetic and propositional proof systems in the reasoning about the world of feasible computations. Then we survey some known lower bounds on the complexity of proofs in various propositional proof systems, paying special a ..."
Abstract

Cited by 27 (10 self)
 Add to MetaCart
. We begin with a highly informal discussion of the role played by Bounded Arithmetic and propositional proof systems in the reasoning about the world of feasible computations. Then we survey some known lower bounds on the complexity of proofs in various propositional proof systems, paying special attention to recent attempts on reducing such bounds to some purely complexity results or assumptions. As one of the main motivations for this research we discuss provability of extremely important propositional formulae that express hardness of explicit Boolean functions with respect to various nonuniform computational models. 1. Propositional proofs as feasible proofs of plain statements Interesting and viable logical theories do not appear as result of sheer speculation. Conversely, they attempt to summarize and capture a certain amount of reasoning of a certain style about a certain class of objects that had existed in the math community before the mathematical logics entered the stage....
Tautologies From PseudoRandom Generators
, 2001
"... We consider tautologies formed from a pseudorandom number generator, dened in Krajcek [12] and in Alekhnovich et.al. [2]. We explain a strategy of proving their hardness for EF via a conjecture about bounded arithmetic formulated in Krajcek [12]. Further we give a purely nitary statement, in a ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
We consider tautologies formed from a pseudorandom number generator, dened in Krajcek [12] and in Alekhnovich et.al. [2]. We explain a strategy of proving their hardness for EF via a conjecture about bounded arithmetic formulated in Krajcek [12]. Further we give a purely nitary statement, in a form of a hardness condition posed on a function, equivalent to the conjecture. This is accompanied by a brief explanation, aimed at nonlogicians, of the relation between propositional proof complexity and bounded arithmetic. It is a fundamental problem of mathematical logic to decide if tautologies can be inferred in propositional calculus in substantially fewer steps than it takes to check all possible truth assignments. This is closely related to the famous P/NP problem of Cook [3]. By propositional calculus I mean any textbook system based on a nite number of inference rules and axiom schemes that is sound and complete. The qualication substantially less means that the nu...
How to Lie Without Being (easily) Convicted and the Lengths of Proofs in Propositional Calculus
"... We shall describe two general methods for proving lower bounds on the lengths of proofs in propositional calculus and give examples of such lower bounds. One of the methods is based on interactive proofs where one player is claiming that he has a falsifying assignment for a tautology and the sec ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
We shall describe two general methods for proving lower bounds on the lengths of proofs in propositional calculus and give examples of such lower bounds. One of the methods is based on interactive proofs where one player is claiming that he has a falsifying assignment for a tautology and the second player is trying to convict him of a lie.
Polynomialsize Frege and Resolution Proofs of stConnectivity and Hex Tautologies
 Theorectical Computer Science
, 2003
"... A grid graph has rectangularly arranged vertices with edges permitted only between orthogonally adjacent vertices. The stconnectivity principle states that it is not possible to have a red path of edges and a green path of edges which connect diagonally opposite corners of the grid graph unless ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
A grid graph has rectangularly arranged vertices with edges permitted only between orthogonally adjacent vertices. The stconnectivity principle states that it is not possible to have a red path of edges and a green path of edges which connect diagonally opposite corners of the grid graph unless the paths cross somewhere.
The Deduction Rule and Linear and Nearlinear Proof Simulations
"... ... that a Frege proof of n lines can be transformed into a treelike Frege proof of O(n log n) lines and of height O(log n). As a corollary of this fact we can prove that natural deduction and sequent calculus treelike systems simulate Frege systems with proof lengths bounded by O(n log n). ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
... that a Frege proof of n lines can be transformed into a treelike Frege proof of O(n log n) lines and of height O(log n). As a corollary of this fact we can prove that natural deduction and sequent calculus treelike systems simulate Frege systems with proof lengths bounded by O(n log n).
Lower Bounds for the Polynomial Calculus and the Gröbner Basis Algorithm
, 1997
"... this paper, all the lower bounds show that in fact any refutation of some initial polynomials has to contain a polynomial f with large degree of f . ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
this paper, all the lower bounds show that in fact any refutation of some initial polynomials has to contain a polynomial f with large degree of f .
Bounded Arithmetic and Constant Depth Frege Proofs
, 2004
"... We discuss the ParisWilkie translation from bounded arithmeticproofs to bounded depth propositional proofs in both relativized and nonrelativized forms. We describe normal forms for proofs in boundedarithmetic, and a definition of \Sigma 0depth for PKproofs that makes the translation from boun ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
We discuss the ParisWilkie translation from bounded arithmeticproofs to bounded depth propositional proofs in both relativized and nonrelativized forms. We describe normal forms for proofs in boundedarithmetic, and a definition of \Sigma 0depth for PKproofs that makes the translation from bounded arithmetic to propositional logic particularlytransparent. Using this, we give new proofs of the witnessing theorems for S12and T 12; namely, new proofs that the \Sigma b1definable functions of S12are polynomial time computable and that the \Sigma b1definable functions of T 12 are in Polynomial Local Search (PLS). Both proofs generalize to \Sigma