Results 1  10
of
58
Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Computations
, 1997
"... We prove an exponential lower bound on the length of cutting plane proofs. The proof uses an extension of a lower bound for monotone circuits to circuits which compute with real numbers and use nondecreasing functions as gates. The latter result is of independent interest, since, in particular, i ..."
Abstract

Cited by 135 (5 self)
 Add to MetaCart
We prove an exponential lower bound on the length of cutting plane proofs. The proof uses an extension of a lower bound for monotone circuits to circuits which compute with real numbers and use nondecreasing functions as gates. The latter result is of independent interest, since, in particular, it implies an exponential lower bound for some arithmetic circuits.
Interpolation Theorems, Lower Bounds for Proof Systems, and Independence Results for Bounded Arithmetic
"... A proof of the (propositional) Craig interpolation theorem for cutfree sequent calculus yields that a sequent with a cutfree proof (or with a proof with cutformulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuitsize is at most k. We ..."
Abstract

Cited by 86 (2 self)
 Add to MetaCart
A proof of the (propositional) Craig interpolation theorem for cutfree sequent calculus yields that a sequent with a cutfree proof (or with a proof with cutformulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuitsize is at most k. We give a new proof of the interpolation theorem based on a communication complexity approach which allows a similar estimate for a larger class of proofs. We derive from it several corollaries: 1. Feasible interpolation theorems for the following proof systems: (a) resolution. (b) a subsystem of LK corresponding to the bounded arithmetic theory S 2 2 (ff). (c) linear equational calculus. (d) cutting planes. 2. New proofs of the exponential lower bounds (for new formulas) (a) for resolution ([15]). (b) for the cutting planes proof system with coefficients written in unary ([4]). 3. An alternative proof of the independence result of [43] concerning the provability of circuitsize lower bounds ...
Some Consequences of Cryptographical Conjectures for . . .
, 1995
"... We show that there is a pair of disjoint NPsets, whose disjointness is provable in S 1 2 and which cannot be separated by a set in P=poly, if the cryptosystem RSA is secure. Further we show that factoring and the discrete logarithm are implicitly definable in any extension of S 1 2 admittin ..."
Abstract

Cited by 74 (8 self)
 Add to MetaCart
We show that there is a pair of disjoint NPsets, whose disjointness is provable in S 1 2 and which cannot be separated by a set in P=poly, if the cryptosystem RSA is secure. Further we show that factoring and the discrete logarithm are implicitly definable in any extension of S 1 2 admitting an NP definition of primes about which it can prove that no number satisfying the definition is composite. As a corollary we obtain that the Extended Frege (EF) proof system does not admit feasible interpolation theorem unless the RSA cryptosystem is not secure, and that an extension of EF by tautologies p (p primes), formalizing that p is not composite, as additional axioms does not admit feasible interpolation theorem unless factoring and the discrete logarithm are in P=poly . The NP 6= coNP conjecture is equivalent to the statement that no propositional proof system (as defined in [6]) admits polynomial size proofs of all tautologies. However, only for few proof systems occur...
Proving Integrality Gaps Without Knowing the Linear Program
 Theory of Computing
, 2002
"... Proving integrality gaps for linear relaxations of NP optimization problems is a difficult task and usually undertaken on a casebycase basis. We initiate a more systematic approach. We prove an integrality gap of 2o(1) for three families of linear relaxations for vertex cover, and our methods see ..."
Abstract

Cited by 56 (2 self)
 Add to MetaCart
Proving integrality gaps for linear relaxations of NP optimization problems is a difficult task and usually undertaken on a casebycase basis. We initiate a more systematic approach. We prove an integrality gap of 2o(1) for three families of linear relaxations for vertex cover, and our methods seem relevant to other problems as well.
The efficiency of resolution and DavisPutnam procedures
 SIAM Journal on Computing
, 1999
"... We consider several problems related to the use of resolutionbased methods for determining whether a given boolean formula in conjunctive normal form is satisfiable. First, building on work of Clegg, Edmonds and Impagliazzo, we give an algorithm for satisfiability that when given an unsatisfiabl ..."
Abstract

Cited by 55 (1 self)
 Add to MetaCart
We consider several problems related to the use of resolutionbased methods for determining whether a given boolean formula in conjunctive normal form is satisfiable. First, building on work of Clegg, Edmonds and Impagliazzo, we give an algorithm for satisfiability that when given an unsatisfiable formula of F finds a resolution proof of F , and the runtime of our algorithm is nontrivial as a function of the size of the shortest resolution proof of F . Next we investigate a class of backtrack search algorithms, commonly known as DavisPutnam procedures and provide the first averagecase complexity analysis for their behavior on random formulas. In particular, for a simple algorithm in this class, called ordered DLL we prove that the running time of the algorithm on a randomly generated kCNF formula with n variables and m clauses is 2 Q(n(n/m) 1/(k2) ) with probability 1  o(1). Finally, we give new lower bounds on res(F), the size of the smallest resolution refutation ...
On Interpolation and Automatization for Frege Systems
, 2000
"... The interpolation method has been one of the main tools for proving lower bounds for propositional proof systems. Loosely speaking, if one can prove that a particular proof system has the feasible interpolation property, then a generic reduction can (usually) be applied to prove lower bounds for the ..."
Abstract

Cited by 51 (7 self)
 Add to MetaCart
The interpolation method has been one of the main tools for proving lower bounds for propositional proof systems. Loosely speaking, if one can prove that a particular proof system has the feasible interpolation property, then a generic reduction can (usually) be applied to prove lower bounds for the proof system, sometimes assuming a (usually modest) complexitytheoretic assumption. In this paper, we show that this method cannot be used to obtain lower bounds for Frege systems, or even for TC 0 Frege systems. More specifically, we show that unless factoring (of Blum integers) is feasible, neither Frege nor TC 0 Frege has the feasible interpolation property. In order to carry out our argument, we show how to carry out proofs of many elementary axioms/theorems of arithmetic in polynomial size TC 0 Frege. As a corollary, we obtain that TC 0 Frege as well as any proof system that polynomially simulates it, is not automatizable (under the assumption that factoring of Blum integ...
Pseudorandom Generators Hard for kDNF Resolution and Polynomial Calculus Resolution
, 2003
"... A pseudorandom generator G n : f0; 1g is hard for a propositional proof system P if (roughly speaking) P can not ef ciently prove the statement G n (x 1 ; : : : ; x n ) 6= b for any string b 2 . We present a function (m 2 ) generator which is hard for Res( log n); here Res(k) is the ..."
Abstract

Cited by 41 (4 self)
 Add to MetaCart
A pseudorandom generator G n : f0; 1g is hard for a propositional proof system P if (roughly speaking) P can not ef ciently prove the statement G n (x 1 ; : : : ; x n ) 6= b for any string b 2 . We present a function (m 2 ) generator which is hard for Res( log n); here Res(k) is the propositional proof system that extends Resolution by allowing kDNFs instead of clauses.
On the Relative Complexity of Resolution Refinements and Cutting Planes Proof Systems
, 2000
"... An exponential lower bound for the size of treelike Cutting Planes refutations of a certain family of CNF formulas with polynomial size resolution refutations is proved. This implies an exponential separation between the treelike versions and the daglike versions of resolution and Cutting Planes. ..."
Abstract

Cited by 39 (9 self)
 Add to MetaCart
An exponential lower bound for the size of treelike Cutting Planes refutations of a certain family of CNF formulas with polynomial size resolution refutations is proved. This implies an exponential separation between the treelike versions and the daglike versions of resolution and Cutting Planes. In both cases only superpolynomial separations were known [29, 18, 8]. In order to prove these separations, the lower bounds on the depth of monotone circuits of Raz and McKenzie in [25] are extended to monotone real circuits. An exponential separation is also proved between treelike resolution and several refinements of resolution: negative resolution and regular resolution. Actually this last separation also provides a separation between treelike resolution and ordered resolution, thus the corresponding superpolynomial separation of [29] is extended. Finally, an exponential separation between ordered resolution and unrestricted resolution (also negative resolution) is proved. Only a superpolynomial separation between ordered and unrestricted resolution was previously known [13].
Two party immediate response disputes: properties and efficiency
 Artificial Intelligence
, 2001
"... Abstract. Two Party Immediate Response Disputes (TPIdisputes) are one class of dialogue or argument game in which the protagonists take turns producing counter arguments to the ‘most recent ’ argument advanced by their opponent. Argument games have been found useful as a means of modelling dialecti ..."
Abstract

Cited by 37 (17 self)
 Add to MetaCart
Abstract. Two Party Immediate Response Disputes (TPIdisputes) are one class of dialogue or argument game in which the protagonists take turns producing counter arguments to the ‘most recent ’ argument advanced by their opponent. Argument games have been found useful as a means of modelling dialectical discourse and in providing semantic bases for proof theoretic aspects of reasoning. In this article we consider a formalisation of TPIdisputes in the context of finite Argument Systems. Our principal concern may, informally, be phrased as follows: given a specific argument system, À and argument, x within À, what can be stated concerning the number of rounds a dispute might take for one of its protagonists to accept that x has some defence respectively cannot be defended?
On the Automatizability of Resolution and Related Propositional Proof Systems
, 2002
"... We analyse the possibility that a system that simulates Resolution is automatizable. We call this notion "weak automatizability". We prove ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
We analyse the possibility that a system that simulates Resolution is automatizable. We call this notion "weak automatizability". We prove