Results 1  10
of
563
On limits of wireless communications in a fading environment when using multiple antennas
 Wireless Personal Communications
, 1998
"... Abstract. This paper is motivated by the need for fundamental understanding of ultimate limits of bandwidth efficient delivery of higher bitrates in digital wireless communications and to also begin to look into how these limits might be approached. We examine exploitation of multielement array (M ..."
Abstract

Cited by 2365 (14 self)
 Add to MetaCart
(Show Context)
Abstract. This paper is motivated by the need for fundamental understanding of ultimate limits of bandwidth efficient delivery of higher bitrates in digital wireless communications and to also begin to look into how these limits might be approached. We examine exploitation of multielement array (MEA) technology, that is processing the spatial dimension (not just the time dimension) to improve wireless capacities in certain applications. Specifically, we present some basic information theory results that promise great advantages of using MEAs in wireless LANs and building to building wireless communication links. We explore the important case when the channel characteristic is not available at the transmitter but the receiver knows (tracks) the characteristic which is subject to Rayleigh fading. Fixing the overall transmitted power, we express the capacity offered by MEA technology and we see how the capacity scales with increasing SNR for a large but practical number, n, of antenna elements at both transmitter and receiver. We investigate the case of independent Rayleigh faded paths between antenna elements and find that with high probability extraordinary capacity is available. Compared to the baseline n = 1 case, which by Shannon’s classical formula scales as one more bit/cycle for every 3 dB of signaltonoise ratio (SNR) increase, remarkably with MEAs, the scaling is almost like n more bits/cycle for each 3 dB increase in SNR. To illustrate how great this capacity is, even for small n, take the cases n = 2, 4 and 16 at an average received SNR of 21 dB. For over 99%
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1244 (13 self)
 Add to MetaCart
(Show Context)
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
Spatiotemporal coding for wireless communication
 Wireless Personal Communication
, 1998
"... ..."
(Show Context)
Linear multiuser detectors for synchronous codedivision multipleaccess channels
 IEEE TRANS. INFORM. THEORY
, 1989
"... In codedivision multipleaccess systems, simultaneous multiuser accessing of a common channel is made possible by assigning a signature waveform to each user. Knowledge of these waveforms enables the receiver to demodulate the data streams of each user, upon observation of the sum of the transmitt ..."
Abstract

Cited by 378 (4 self)
 Add to MetaCart
In codedivision multipleaccess systems, simultaneous multiuser accessing of a common channel is made possible by assigning a signature waveform to each user. Knowledge of these waveforms enables the receiver to demodulate the data streams of each user, upon observation of the sum of the transmitted signals, perturbed by additive noise. Under the assumptions of symbolsynchronous transmissions and white Gaussian noise, we analyze the detection mechanism at the receiver, comparing different detectors by their bit error rate in the low background noise region, and by their worstcase behavior in a nearfar environment where the received energies of the users are not necessarily similar. Optimum multiuser detection achieves important performance gains over conventional singleuser detection at the expense of computational complexity that grows exponentially with the number of users. It is shown that in the synchronous case the performance achieved by linear multiuser detectors (whose complexity per demodulated bit is only linear in the number of users) is similar to that of optimum multiuser detection. Attention is focused on detectors whose linear memoryless transformation is a generalized inverse of the matrix of signature waveform crosscorrelations, and on the optimum linear detector. It is shown that the generalized inverse detectors exhibit the same degree of nearfar resistance as the optimum multiuser detector; the optimum linear detector is obtained subsequently, along with sufficient conditions on the signal energies and crosscorrelations to ensure that its performance is equal to that of the optimum multiuser detector.
Infinitehorizon policygradient estimation
 Journal of Artificial Intelligence Research
, 2001
"... Gradientbased approaches to direct policy search in reinforcement learning have received much recent attention as a means to solve problems of partial observability and to avoid some of the problems associated with policy degradation in valuefunction methods. In this paper we introduce � � , a si ..."
Abstract

Cited by 208 (5 self)
 Add to MetaCart
(Show Context)
Gradientbased approaches to direct policy search in reinforcement learning have received much recent attention as a means to solve problems of partial observability and to avoid some of the problems associated with policy degradation in valuefunction methods. In this paper we introduce � � , a simulationbased algorithm for generating a biased estimate of the gradient of the average reward in Partially Observable Markov Decision Processes ( � s) controlled by parameterized stochastic policies. A similar algorithm was proposed by Kimura, Yamamura, and Kobayashi (1995). The algorithm’s chief advantages are that it requires storage of only twice the number of policy parameters, uses one free parameter � � (which has a natural interpretation in terms of biasvariance tradeoff), and requires no knowledge of the underlying state. We prove convergence of � � , and show how the correct choice of the parameter is related to the mixing time of the controlled �. We briefly describe extensions of � � to controlled Markov chains, continuous state, observation and control spaces, multipleagents, higherorder derivatives, and a version for training stochastic policies with internal states. In a companion paper (Baxter, Bartlett, & Weaver, 2001) we show how the gradient estimates generated by � � can be used in both a traditional stochastic gradient algorithm and a conjugategradient procedure to find local optima of the average reward. 1.
KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2005
"... This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a twophase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Base ..."
Abstract

Cited by 136 (7 self)
 Add to MetaCart
(Show Context)
This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a twophase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based on this framework, the authors propose a complete kernel Fisher discriminant analysis (CKFD) algorithm. CKFD can be used to carry out discriminant analysis in “double discriminant subspaces.” The fact that, it can make full use of two kinds of discriminant information, regular and irregular, makes CKFD a more powerful discriminator. The proposed algorithm was tested and evaluated using the FERET face database and the CENPARMI handwritten numeral database. The experimental results show that CKFD outperforms other KFD algorithms.
Toeplitz and Circulant Matrices: A review
, 2001
"... The fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of "finite section" Toeplitz matrices and Toeplitz matrices with absolutely summable elements are derived in a tutorial manner. Mathematical elegance and generality are sacrificed for conceptual simp ..."
Abstract

Cited by 121 (1 self)
 Add to MetaCart
(Show Context)
The fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of "finite section" Toeplitz matrices and Toeplitz matrices with absolutely summable elements are derived in a tutorial manner. Mathematical elegance and generality are sacrificed for conceptual simplicity and insight in the hopes of making these results available to engineers lacking either the background or endurance to attack the mathematical literature on the subject. By limiting the generality of the matrices considered the essential ideas and results can be conveyed in a more intuitive manner without the mathematical machinery required for the most general cases. As an application the results are applied to the study of the covariance matrices and their factors of linear models of discrete time random processes. Acknowledgements The author gratefully acknowledges the assistance of Ronald M. Aarts of the Philips Research Labs in correcting many typos and errors in the 1993 revision, Liu Mingyu in pointing out errors corrected in the 1998 revision, Paolo Tilli of the Scuola Normale Superiore of Pisa for pointing out an incorrect corollary and providing the correction, and to David Neuho# of the University of Michigan for pointing out several typographical errors and some confusing notation. For corrections, comments, and improvements to the 2001 revision thanks are due to William Trench, John Dattorro, and Young HanKim. In particular, Trench brought the WielandtHo#man theorem and its use to prove strengthened results to my attention. Section 2.4 largely follows his suggestions, although I take the blame for any introduced errors. Contents 1
A cyclic low rank Smith method for large sparse Lyapunov equations with applications in model reduction and optimal control
 SIAM J. Sci. Comput
, 1998
"... ..."