Results 1  10
of
308
On limits of wireless communications in a fading environment when using multiple antennas
 Wireless Personal Communications
, 1998
"... Abstract. This paper is motivated by the need for fundamental understanding of ultimate limits of bandwidth efficient delivery of higher bitrates in digital wireless communications and to also begin to look into how these limits might be approached. We examine exploitation of multielement array (M ..."
Abstract

Cited by 1530 (7 self)
 Add to MetaCart
Abstract. This paper is motivated by the need for fundamental understanding of ultimate limits of bandwidth efficient delivery of higher bitrates in digital wireless communications and to also begin to look into how these limits might be approached. We examine exploitation of multielement array (MEA) technology, that is processing the spatial dimension (not just the time dimension) to improve wireless capacities in certain applications. Specifically, we present some basic information theory results that promise great advantages of using MEAs in wireless LANs and building to building wireless communication links. We explore the important case when the channel characteristic is not available at the transmitter but the receiver knows (tracks) the characteristic which is subject to Rayleigh fading. Fixing the overall transmitted power, we express the capacity offered by MEA technology and we see how the capacity scales with increasing SNR for a large but practical number, n, of antenna elements at both transmitter and receiver. We investigate the case of independent Rayleigh faded paths between antenna elements and find that with high probability extraordinary capacity is available. Compared to the baseline n = 1 case, which by Shannon’s classical formula scales as one more bit/cycle for every 3 dB of signaltonoise ratio (SNR) increase, remarkably with MEAs, the scaling is almost like n more bits/cycle for each 3 dB increase in SNR. To illustrate how great this capacity is, even for small n, take the cases n = 2, 4 and 16 at an average received SNR of 21 dB. For over 99%
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 958 (14 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
Linear multiuser detectors for synchronous codedivision multipleaccess channels
 IEEE TRANS. INFORM. THEORY
, 1989
"... In codedivision multipleaccess systems, simultaneous multiuser accessing of a common channel is made possible by assigning a signature waveform to each user. Knowledge of these waveforms enables the receiver to demodulate the data streams of each user, upon observation of the sum of the transmitt ..."
Abstract

Cited by 310 (4 self)
 Add to MetaCart
In codedivision multipleaccess systems, simultaneous multiuser accessing of a common channel is made possible by assigning a signature waveform to each user. Knowledge of these waveforms enables the receiver to demodulate the data streams of each user, upon observation of the sum of the transmitted signals, perturbed by additive noise. Under the assumptions of symbolsynchronous transmissions and white Gaussian noise, we analyze the detection mechanism at the receiver, comparing different detectors by their bit error rate in the low background noise region, and by their worstcase behavior in a nearfar environment where the received energies of the users are not necessarily similar. Optimum multiuser detection achieves important performance gains over conventional singleuser detection at the expense of computational complexity that grows exponentially with the number of users. It is shown that in the synchronous case the performance achieved by linear multiuser detectors (whose complexity per demodulated bit is only linear in the number of users) is similar to that of optimum multiuser detection. Attention is focused on detectors whose linear memoryless transformation is a generalized inverse of the matrix of signature waveform crosscorrelations, and on the optimum linear detector. It is shown that the generalized inverse detectors exhibit the same degree of nearfar resistance as the optimum multiuser detector; the optimum linear detector is obtained subsequently, along with sufficient conditions on the signal energies and crosscorrelations to ensure that its performance is equal to that of the optimum multiuser detector.
SpatioTemporal Coding for Wireless Communication
 IEEE Trans. Commun
, 1998
"... Multipath signal propagation has long been viewed as an impairment to reliable communication in wireless channels. This paper shows that the presence of multipath greatly improves achievable data rate if the appropriate communication structure is employed. A compact model is developed for the multip ..."
Abstract

Cited by 276 (14 self)
 Add to MetaCart
Multipath signal propagation has long been viewed as an impairment to reliable communication in wireless channels. This paper shows that the presence of multipath greatly improves achievable data rate if the appropriate communication structure is employed. A compact model is developed for the multipleinput multipleoutput (MIMO) dispersive spatially selective wireless communication channel. The multivariate information capacity is analyzed. For high signaltonoise ratio (SNR) conditions, the MIMO channel can exhibit a capacity slope in bits per decibel of power increase that is proportional to the minimum of the number multipath components, the number of input antennas, or the number of output antennas. This desirable result is contrasted with the lower capacity slope of the wellstudied case with multiple antennas at only one side of the radio link. A spatiotemporal vectorcoding (STVC) communication structure is suggested as a means for achieving MIMO channel capacity. The complexity of STVC motivates a more practical reducedcomplexity discrete matrix multitone (DMMT) spacefrequency coding approach. Both of these structures are shown to be asymptotically optimum. An adaptivelattice trelliscoding technique is suggested as a method for coding across the space and frequency dimensions that exist in the DMMT channel. Experimental examples that support the theoretical results are presented. Index TermsAdaptive arrays, adaptive coding, adaptive modulation, antenna arrays, broadband communication, channel coding, digital modulation, information rates, MIMO systems, multipath channels. I.
Differential Unitary SpaceTime Modulation
 IEEE Trans. Commun
, 2000
"... We present a framework for differential modulation with multiple antennas across a continuously fading channel, where neither the transmitter nor the receiver knows the fading coefficients. The framework can be seen as a natural extension of standard differential phase shift keying (DPSK) commonly u ..."
Abstract

Cited by 222 (0 self)
 Add to MetaCart
We present a framework for differential modulation with multiple antennas across a continuously fading channel, where neither the transmitter nor the receiver knows the fading coefficients. The framework can be seen as a natural extension of standard differential phase shift keying (DPSK) commonly used in singleantenna unknownchannel systems. We show how our differential framework links the unknownchannel system with a knownchannel system, and we develop performance design criteria. As a special case, we introduce a class of diagonal signals where only one antenna is active at any time, and demonstrate how these signals may be used to achieve full transmitter diversity and low probability of error. Index TermsMultielement antenna arrays, wireless communications, fading channels, transmitter diversity, receiver diversity 1 Introduction Recent advances in communicating across multipleantenna wireless communication links show that these links can support very high data rates w...
Infinitehorizon policygradient estimation
 Journal of Artificial Intelligence Research
, 2001
"... Gradientbased approaches to direct policy search in reinforcement learning have received much recent attention as a means to solve problems of partial observability and to avoid some of the problems associated with policy degradation in valuefunction methods. In this paper we introduce � � , a si ..."
Abstract

Cited by 153 (5 self)
 Add to MetaCart
Gradientbased approaches to direct policy search in reinforcement learning have received much recent attention as a means to solve problems of partial observability and to avoid some of the problems associated with policy degradation in valuefunction methods. In this paper we introduce � � , a simulationbased algorithm for generating a biased estimate of the gradient of the average reward in Partially Observable Markov Decision Processes ( � s) controlled by parameterized stochastic policies. A similar algorithm was proposed by Kimura, Yamamura, and Kobayashi (1995). The algorithm’s chief advantages are that it requires storage of only twice the number of policy parameters, uses one free parameter � � (which has a natural interpretation in terms of biasvariance tradeoff), and requires no knowledge of the underlying state. We prove convergence of � � , and show how the correct choice of the parameter is related to the mixing time of the controlled �. We briefly describe extensions of � � to controlled Markov chains, continuous state, observation and control spaces, multipleagents, higherorder derivatives, and a version for training stochastic policies with internal states. In a companion paper (Baxter, Bartlett, & Weaver, 2001) we show how the gradient estimates generated by � � can be used in both a traditional stochastic gradient algorithm and a conjugategradient procedure to find local optima of the average reward. 1.
Semidefinite Programming and Combinatorial Optimization
 DOC. MATH. J. DMV
, 1998
"... We describe a few applications of semide nite programming in combinatorial optimization. ..."
Abstract

Cited by 99 (1 self)
 Add to MetaCart
We describe a few applications of semide nite programming in combinatorial optimization.
A cyclic low rank Smith method for large sparse Lyapunov equations with applications in model reduction and optimal control
 SIAM J. Sci. Comput
, 1998
"... ..."
Universal Discrete Denoising: Known Channel
 IEEE Trans. Inform. Theory
, 2003
"... A discrete denoising algorithm estimates the input sequence to a discrete memoryless channel (DMC) based on the observation of the entire output sequence. For the case in which the DMC is known and the quality of the reconstruction is evaluated with a given singleletter fidelity criterion, we pr ..."
Abstract

Cited by 79 (32 self)
 Add to MetaCart
A discrete denoising algorithm estimates the input sequence to a discrete memoryless channel (DMC) based on the observation of the entire output sequence. For the case in which the DMC is known and the quality of the reconstruction is evaluated with a given singleletter fidelity criterion, we propose a discrete denoising algorithm that does not assume knowledge of statistical properties of the input sequence. Yet, the algorithm is universal in the sense of asymptotically performing as well as the optimum denoiser that knows the input sequence distribution, which is only assumed to be stationary and ergodic. Moreover, the algorithm is universal also in a semistochastic setting, in which the input is an individual sequence, and the randomness is due solely to the channel noise.