Results 1 
7 of
7
Harnack inequalities and subGaussian estimates for random walks
 Math. Annalen
, 2002
"... We show that a fiparabolic Harnack inequality for random walks on graphs is equivalent, on one hand, to so called fiGaussian estimates for the transition probability and, on the other hand, to the conjunction of the elliptic Harnack inequality, the doubling volume property, and the fact that the m ..."
Abstract

Cited by 30 (6 self)
 Add to MetaCart
We show that a fiparabolic Harnack inequality for random walks on graphs is equivalent, on one hand, to so called fiGaussian estimates for the transition probability and, on the other hand, to the conjunction of the elliptic Harnack inequality, the doubling volume property, and the fact that the mean exit time in any ball of radius R is of the order R . The latter condition can be replaced by a certain estimate of a resistance of annuli.
Random walk on the incipient infinite cluster on trees
 Illinois J. Math
"... Abstract. Let G be the incipient infinite cluster (IIC) for percolation on a homogeneous tree of degree n0 + 1. We obtain estimates for the transition density of the the continuous time simple random walk Y on G; the process satisfies anomalous diffusion and has spectral dimension 4 ..."
Abstract

Cited by 26 (7 self)
 Add to MetaCart
Abstract. Let G be the incipient infinite cluster (IIC) for percolation on a homogeneous tree of degree n0 + 1. We obtain estimates for the transition density of the the continuous time simple random walk Y on G; the process satisfies anomalous diffusion and has spectral dimension 4
The Einstein relation for random walks on graphs
, 2008
"... This paper investigates the Einstein relation; the connection between the volume growth, the resistance growth and the expected time a random walk needs to leave a ball on a weighted graph. The Einstein relation is proved under different set of conditions. In the simplest case it is shown under the ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
This paper investigates the Einstein relation; the connection between the volume growth, the resistance growth and the expected time a random walk needs to leave a ball on a weighted graph. The Einstein relation is proved under different set of conditions. In the simplest case it is shown under the volume doubling and time comparison principles. This and the other set of conditions provide the basic vwork for the study of (sub) diffusive behavior of the random walks on weighted graphs. 1
Upper Bounds for Transition Probabilities on Graphs
, 2004
"... In this paper necessary and sufficient conditions are presented for heat kernel upper bounds for random walks on weighted graphs. Several equivalent conditions are given in the form of isoperimetric inequalities. ..."
Abstract
 Add to MetaCart
In this paper necessary and sufficient conditions are presented for heat kernel upper bounds for random walks on weighted graphs. Several equivalent conditions are given in the form of isoperimetric inequalities.
unknown title
"... www.imstat.org/aihp Random walk on graphs with regular resistance and volume growth ..."
Abstract
 Add to MetaCart
www.imstat.org/aihp Random walk on graphs with regular resistance and volume growth