Results 1  10
of
30
Robust Solutions To LeastSquares Problems With Uncertain Data
, 1997
"... . We consider leastsquares problems where the coefficient matrices A; b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be interpret ..."
Abstract

Cited by 144 (12 self)
 Add to MetaCart
. We consider leastsquares problems where the coefficient matrices A; b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be interpreted as a Tikhonov regularization procedure, with the advantage that it provides an exact bound on the robustness of solution, and a rigorous way to compute the regularization parameter. When the perturbation has a known (e.g., Toeplitz) structure, the same problem can be solved in polynomialtime using semidefinite programming (SDP). We also consider the case when A; b are rational functions of an unknownbutbounded perturbation vector. We show how to minimize (via SDP) upper bounds on the optimal worstcase residual. We provide numerical examples, including one from robust identification and one from robust interpolation. Key Words. Leastsquares, uncertainty, robustness, secondorder cone...
CSDP, a C library for semidefinite programming.
, 1997
"... this paper is organized as follows. First, we discuss the formulation of the semidefinite programming problem used by CSDP. We then describe the predictor corrector algorithm used by CSDP to solve the SDP. We discuss the storage requirements of the algorithm as well as its computational complexity. ..."
Abstract

Cited by 139 (1 self)
 Add to MetaCart
this paper is organized as follows. First, we discuss the formulation of the semidefinite programming problem used by CSDP. We then describe the predictor corrector algorithm used by CSDP to solve the SDP. We discuss the storage requirements of the algorithm as well as its computational complexity. Finally, we present results from the solution of a number of test problems. 2 The SDP Problem We consider semidefinite programming problems of the form max tr (CX)
sdpsol: A Parser/Solver for Semidefinite Programs with Matrix Structure
 In Recent advances in LMI methods for control
, 1995
"... . A variety of analysis and design problems in control, communication and information theory, statistics, combinatorial optimization, computational geometry, circuit design, and other fields can be expressed as semidefinite programming problems (SDPs) or determinant maximization problems (maxdet pr ..."
Abstract

Cited by 44 (18 self)
 Add to MetaCart
. A variety of analysis and design problems in control, communication and information theory, statistics, combinatorial optimization, computational geometry, circuit design, and other fields can be expressed as semidefinite programming problems (SDPs) or determinant maximization problems (maxdet problems). These problems often have matrix structure, i.e., some of the optimization variables are matrices. This matrix structure has two important practical ramifications: first, it makes the job of translating the problem into a standard SDP or maxdet format tedious, and, second, it opens the possibility of exploiting the structure to speed up the computation. In this paper we describe the design and implementation of sdpsol, a parser/solver for SDPs and maxdet problems. sdpsol allows problems with matrix structure to be described in a simple, natural, and convenient way. Although the current implementation of sdpsol does not exploit matrix structure in the solution algorithm, the languag...
A cone Complementarity Linearization Algorithm for Static OutputFeedback and Related Problems
 IEEE Transaction on Automatic Control
, 1997
"... Abstract—This paper describes a linear matrix inequality (LMI)based algorithm for the static and reducedorder outputfeedback synthesis problems of nthorder linear timeinvariant (LTI) systems with nu (respectively, ny) independent inputs (respectively, outputs). The algorithm is based on a “cone ..."
Abstract

Cited by 30 (0 self)
 Add to MetaCart
Abstract—This paper describes a linear matrix inequality (LMI)based algorithm for the static and reducedorder outputfeedback synthesis problems of nthorder linear timeinvariant (LTI) systems with nu (respectively, ny) independent inputs (respectively, outputs). The algorithm is based on a “cone complementarity ” formulation of the problem and is guaranteed to produce a stabilizing controller of order m n 0 max(nu;ny), matching a generic stabilizability result of Davison and Chatterjee [7]. Extensive numerical experiments indicate that the algorithm finds a controller with order less than or equal to that predicted by Kimura’s generic stabilizability result (m n0nu0ny+1). A similar algorithm can be applied to a variety of control problems, including robust control synthesis. Index Terms — Complementarity problem, linear matrix inequality, reducedorder stabilization, static output feedback. I.
Lowauthority controller design via convex optimization
 AIAA Journal of Guidance, Control, and Dynamics
, 1999
"... In this paper we address the problem of lowauthority controller (LAC) design. The premise is that the actuators have limited authority, and hence cannot significantly shift the eigenvalues of the system. As a result, the closedloop eigenvalues can be well approximated analytically using perturbati ..."
Abstract

Cited by 30 (14 self)
 Add to MetaCart
In this paper we address the problem of lowauthority controller (LAC) design. The premise is that the actuators have limited authority, and hence cannot significantly shift the eigenvalues of the system. As a result, the closedloop eigenvalues can be well approximated analytically using perturbation theory. These analytical approximations may suffice to predict the behavior of the closedloop system in practical cases, and will provide at least a very strong rationale for the first step in the design iteration loop. We will show that LAC design can be cast as convex optimization problems that can be solved efficiently in practice using interiorpoint methods. Also, we will show that by optimizing the ℓ1 norm of the feedback gains, we can arrive at sparse designs, i.e., designs in which only a small number of the control gains are nonzero. Thus, in effect, we can also solve actuator/sensor placement or controller architecture design problems. Keywords: Lowauthority control, actuator/sensor placement, linear operator perturbation theory, convex optimization, secondorder cone programming, semidefinite programming, linear matrix inequality. 1
Optimal Wire and Transistor Sizing for Circuits with NonTree Topology
 in Proc. Int. Conf. on Computer Aided Design
, 1997
"... Conventional methods for optimal sizing of wires and transistors use linear RC circuit models and the Elmore delay as a measure of signal delay. If the RC circuit has a tree topology the sizing problem reduces to a convex optimization problem which can be solved using geometric programming. The tree ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
Conventional methods for optimal sizing of wires and transistors use linear RC circuit models and the Elmore delay as a measure of signal delay. If the RC circuit has a tree topology the sizing problem reduces to a convex optimization problem which can be solved using geometric programming. The tree topology restriction precludes the use of these methods in several sizing problems of significant importance to highperformance deep submicron design including, for example, circuits with loops of resistors, e.g., clock distribution meshes, and circuits with coupling capacitors, e.g., buses with crosstalk between the lines. The paper proposes a new optimization method which can be used to address these problems. The method uses the dominant time constant as a measure of signal propagation delay in an RC circuit, instead of Elmore delay. Using this measure, sizing of any RC circuit can be cast as a convex optimization problem which can be solved using the recently developed efficient interi...
Control of Asynchronous Dynamical Systems with Rate Constraints on Events
 In Proc. 38th IEEE Conf. Decision Control
, 1999
"... Abstract — In this paper we consider dynamical systems which are driven by “events ” that occur asynchronously. It is assumed that the event rates are fixed, or at least they can be bounded on any time period of length T. Such systems are becoming increasingly important in control due to the very ra ..."
Abstract

Cited by 27 (0 self)
 Add to MetaCart
Abstract — In this paper we consider dynamical systems which are driven by “events ” that occur asynchronously. It is assumed that the event rates are fixed, or at least they can be bounded on any time period of length T. Such systems are becoming increasingly important in control due to the very rapid advances in digital systems, communication systems, and data networks. Examples of such systems include, control systems in which signals are transmitted over an asynchronous network; distributed control systems in which each subsystem has its own objective, sensors, resources and level of decision making; parallelized numerical algorithms in which the algorithm is separated into several local algorithms operating concurrently at different processors; and queuing networks. We present a Lyapunovbased theory for asynchronous dynamical systems and show how Lyapunov functions and controllers can be constructed for such systems by solving linear matrix inequality (LMI) and bilinear matrix inequality (BMI) problems. Examples are also presented to demonstrate the effectiveness of the approach.
A Pathfollowing Method for Solving BMI Problems in Control
, 1999
"... In this paper we present a pathfollowing (homotopy) method for (locally) solving bilinear matrix inequality (BMI) prob lems in control. The method is to linearize the BMI using a first order perturbation approximation, and then iteratively compute a perturbation that "slightly" improves the contro ..."
Abstract

Cited by 19 (3 self)
 Add to MetaCart
In this paper we present a pathfollowing (homotopy) method for (locally) solving bilinear matrix inequality (BMI) prob lems in control. The method is to linearize the BMI using a first order perturbation approximation, and then iteratively compute a perturbation that "slightly" improves the controller performance by solving a semidefinite program (SDP). This process is repeated un til the desired performance is achieved, or the performance cannot be improved any further. While this is an approximate method for solving BMIs, we present several examples that illustrate the effectiveness of the approach.
Optimizing dominant time constant in RC circuits
, 1996
"... We propose to use the dominant time constant of a resistorcapacitor (RC) circuit as a measure of the signal propagation delay through the circuit. We show that the dominant time constant is a quasiconvex function of the conductances and capacitances, and use this property to cast several interestin ..."
Abstract

Cited by 16 (8 self)
 Add to MetaCart
We propose to use the dominant time constant of a resistorcapacitor (RC) circuit as a measure of the signal propagation delay through the circuit. We show that the dominant time constant is a quasiconvex function of the conductances and capacitances, and use this property to cast several interesting design problems as convex optimization problems, specifically, semidefinite programs (SDPs). For example, assuming that the conductances and capacitances are affine functions of the design parameters (which is a common model in transistor or interconnect wire sizing), one can minimize the power consumption or the area subject to an upper bound on the dominant time constant, or compute the optimal tradeoff surface between power, dominant time constant, and area. We will also note that, to a certain extent, convex optimization can be used to design the topology of the interconnect wires. This approach has two advantages over methods based on Elmore delay optimization. First, it handles a far wider class of circuits, e.g., those with nongrounded capacitors. Second, it always results in convex optimization problems for which very efficient interiorpoint methods have recently been developed. We illustrate the method, and extensions, with several examples involving optimal wire and transistor sizing.