Results 1 
6 of
6
On the Notion of Interestingness in Automated Mathematical Discovery
 International Journal of Human Computer Studies
, 2000
"... We survey ve mathematical discovery programs by looking in detail at the discovery processes they illustrate and the success they've had. We focus on how they estimate the interestingness of concepts and conjectures and extract some common notions about interestingness in automated mathematical ..."
Abstract

Cited by 64 (25 self)
 Add to MetaCart
We survey ve mathematical discovery programs by looking in detail at the discovery processes they illustrate and the success they've had. We focus on how they estimate the interestingness of concepts and conjectures and extract some common notions about interestingness in automated mathematical discovery. We detail how empirical evidence is used to give plausibility to conjectures, and the dierent ways in which a result can be thought of as novel. We also look at the ways in which the programs assess how surprising and complex a conjecture statement is, and the dierent ways in which the applicability of a concept or conjecture is used. Finally, we note how a user can set tasks for the program to achieve and how this aects the calculation of interestingness. We conclude with some hints on the use of interestingness measures for future developers of discovery programs in mathematics.
Automatic Concept Formation in Pure Mathematics
"... The HR program forms concepts and makes conjectures in domains of pure mathematics andusestheoremproverOTTERandmodel generatorMACEtoproveordisprovetheconjectures. HRmeasurespropertiesofconcepts andassessesthetheoremsandproofsinvolving themtoestimatetheinterestingnessofeach concept and employ a best ..."
Abstract

Cited by 38 (28 self)
 Add to MetaCart
The HR program forms concepts and makes conjectures in domains of pure mathematics andusestheoremproverOTTERandmodel generatorMACEtoproveordisprovetheconjectures. HRmeasurespropertiesofconcepts andassessesthetheoremsandproofsinvolving themtoestimatetheinterestingnessofeach concept and employ a best first search. This approachhasledHRtothediscoveryofinterestingnewmathematics and enables it to build theories from just the axioms of finite algebras.
HR  A System for Machine Discovery in Finite Algebras
 ECAI 98 Workshop Programme
, 1998
"... We describe the HR concept formation program which invents mathematical definitions and conjectures in finite algebras such as group theory and ring theory. We give the methods behind and the reasons for the concept formation in HR, an evaluation of its performance in its training domain, group theo ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
We describe the HR concept formation program which invents mathematical definitions and conjectures in finite algebras such as group theory and ring theory. We give the methods behind and the reasons for the concept formation in HR, an evaluation of its performance in its training domain, group theory, and a look at HR in domains other than group theory.
Automatic Theory Formation in Graph Theory
 In Argentine Symposium on Artificial Intelligence
, 1999
"... This paper presents SCOT, a system for automatic theory construction in the domain of Graph Theory. Following on the footsteps of the programs ARE [9], HR [1] and Cyrano [6], concept discovery is modeled as search in a concept space. We propose a classification for discovery heuristics, which takes ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
This paper presents SCOT, a system for automatic theory construction in the domain of Graph Theory. Following on the footsteps of the programs ARE [9], HR [1] and Cyrano [6], concept discovery is modeled as search in a concept space. We propose a classification for discovery heuristics, which takes into account the main processes related to theory construction: concept construction, example production, example analysis, conjecture construction, and conjecture analysis.
An Attempt to Automate NPHardness Reductions via SO∃ Logic
, 2004
"... We explore the possibility of automating NPhardness reductions. We motivate the problem from an artificial intelligence perspective, then propose the use of secondorder existential (SO#) logic as representation language for decision problems. Building upon the theoretical framework of J. Antonio ..."
Abstract
 Add to MetaCart
We explore the possibility of automating NPhardness reductions. We motivate the problem from an artificial intelligence perspective, then propose the use of secondorder existential (SO#) logic as representation language for decision problems. Building upon the theoretical framework of J. Antonio Medina, we explore the possibility of implementing seven syntactic operators. Each operator transforms SO# sentences in a way that preserves NPcompleteness. We subsequently propose a program which implements these operators.
Computational Discovery in Pure Mathematics
"... Abstract. We discuss what constitutes knowledge in pure mathematics and how new advances are made and communicated. We describe the impact of computer algebra systems, automated theorem provers, programs designed to generate examples, mathematical databases, and theory formation programs on the body ..."
Abstract
 Add to MetaCart
Abstract. We discuss what constitutes knowledge in pure mathematics and how new advances are made and communicated. We describe the impact of computer algebra systems, automated theorem provers, programs designed to generate examples, mathematical databases, and theory formation programs on the body of knowledge in pure mathematics. We discuss to what extent the output from certain programs can be considered a discovery in pure mathematics. This enables us to assess the state of the art with respect to Newell and Simonâ€™s prediction that a computer would discover and prove an important mathematical theorem. 1