Results 1  10
of
115
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 564 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
The Bayes Net Toolbox for MATLAB
 Computing Science and Statistics
, 2001
"... The Bayes Net Toolbox (BNT) is an opensource Matlab package for directed graphical models. BNT supports many kinds of nodes (probability distributions), exact and approximate inference, parameter and structure learning, and static and dynamic models. BNT is widely used in teaching and research: the ..."
Abstract

Cited by 176 (2 self)
 Add to MetaCart
The Bayes Net Toolbox (BNT) is an opensource Matlab package for directed graphical models. BNT supports many kinds of nodes (probability distributions), exact and approximate inference, parameter and structure learning, and static and dynamic models. BNT is widely used in teaching and research: the web page has received over 28,000 hits since May 2000. In this paper, we discuss a broad spectrum of issues related to graphical models (directed and undirected), and describe, at a highlevel, how BNT was designed to cope with them all. We also compare BNT to other software packages for graphical models, and to the nascent OpenBayes effort.
Variational message passing
 Journal of Machine Learning Research
, 2005
"... This paper presents Variational Message Passing (VMP), a general purpose algorithm for applying variational inference to a Bayesian Network. Like belief propagation, Variational Message Passing proceeds by passing messages between nodes in the graph and updating posterior beliefs using local operati ..."
Abstract

Cited by 81 (6 self)
 Add to MetaCart
This paper presents Variational Message Passing (VMP), a general purpose algorithm for applying variational inference to a Bayesian Network. Like belief propagation, Variational Message Passing proceeds by passing messages between nodes in the graph and updating posterior beliefs using local operations at each node. Each such update increases a lower bound on the log evidence (unless already at a local maximum). In contrast to belief propagation, VMP can be applied to a very general class of conjugateexponential models because it uses a factorised variational approximation. Furthermore, by introducing additional variational parameters, VMP can be applied to models containing nonconjugate distributions. The VMP framework also allows the lower bound to be evaluated, and this can be used both for model comparison and for detection of convergence. Variational Message Passing has been implemented in the form of a general purpose inference engine called VIBES (‘Variational Inference for BayEsian networkS’) which allows models to be specified graphically and then solved variationally without recourse to coding.
Fast Sampling Of Gaussian Markov Random Fields With Applications
 Journal of the Royal Statistical Society, Series B
, 2000
"... This report has URL http://www.math.ntnu.no/preprint/statistics/2000/S12000.ps ..."
Abstract

Cited by 74 (6 self)
 Add to MetaCart
This report has URL http://www.math.ntnu.no/preprint/statistics/2000/S12000.ps
A general algorithm for approximate inference and its applciation to hybrid bayes nets
 In Uncertainty in Artificial Intelligence (UAI'98
, 1998
"... The clique tree algorithm is the standard method for doing inference in Bayesian networks. It works by manipulating clique potentials — distributions over the variables in a clique. While this approach works well for many networks, it is limited by the need to maintain an exact representation of the ..."
Abstract

Cited by 73 (2 self)
 Add to MetaCart
The clique tree algorithm is the standard method for doing inference in Bayesian networks. It works by manipulating clique potentials — distributions over the variables in a clique. While this approach works well for many networks, it is limited by the need to maintain an exact representation of the clique potentials. This paper presents a new unified approach that combines approximate inference and the clique tree algorithm, thereby circumventing this limitation. Many known approximate inference algorithms can be viewed as instances of this approach. The algorithm essentially does clique tree propagation, using approximate inference to estimate the densities in each clique. In many settings, the computation of the approximate clique potential can be done easily using statistical importance sampling. Iterations are used to gradually improve the quality of the estimation. 1
Automatic symbolic traffic scene analysis using belief networks
 PROCEEDINGS 12TH NATIONAL CONFERENCE IN AI
, 1994
"... Automatic symbolic traffic scene analysis is essential to many areas of IVHS (Intelligent Vehicle Highway Systems). Traffic scene information can be used to optimize traffic flow during busy periods, identify stalled vehicles and accidents, and aid the decisionmaking of an autonomous vehicle contro ..."
Abstract

Cited by 69 (8 self)
 Add to MetaCart
Automatic symbolic traffic scene analysis is essential to many areas of IVHS (Intelligent Vehicle Highway Systems). Traffic scene information can be used to optimize traffic flow during busy periods, identify stalled vehicles and accidents, and aid the decisionmaking of an autonomous vehicle controller. Improvements in technologies for machine visionbased surveillance and highlevel symbolic reasoning have enabled us to develop a system for detailed, reliable traffic scene analysis. The machine vision component of our system employs a contour tracker and an a fine motion model based on Kalman filters to extract vehicle trajectories over a sequence of traffic scene images. The symbolic reasoning component uses a dynamic belief network to make inferences about traffic events such as vehicle lane changes and stalls. In this paper, we discuss the key tasks of the vision and reasoning components as well as their integration into a working prototype.
Nonuniform Dynamic Discretization in Hybrid Networks
 In Proc. UAI
, 1997
"... We consider probabilistic inference in general hybrid networks, which include continuous and discrete variables in an arbitrary topology. We reexamine the question of variable discretization in a hybrid network aiming at minimizing the information loss induced by the discretization. We show that a n ..."
Abstract

Cited by 64 (3 self)
 Add to MetaCart
We consider probabilistic inference in general hybrid networks, which include continuous and discrete variables in an arbitrary topology. We reexamine the question of variable discretization in a hybrid network aiming at minimizing the information loss induced by the discretization. We show that a nonuniform partition across all variables as opposed to uniform partition of each variable separately reduces the size of the data structures needed to represent a continuous function. We also provide a simple but efficient procedure for nonuniform partition. To represent a nonuniform discretization in the computer memory, we introduce a new data structure, which we call a Binary Split Partition (BSP) tree. We show that BSP trees can be an exponential factor smaller than the data structures in the standard uniform discretization in multiple dimensions and show how the BSP trees can be used in the standard join tree algorithm. We show that the accuracy of the inference process can be significa...
Inference in Hybrid Networks: Theoretical Limits and Practical Algorithms
 In UAI
, 2001
"... An important subclass of hybrid Bayesian networks ..."