Results 1  10
of
47
Computing Persistent Homology
 Discrete Comput. Geom
"... We show that the persistent homology of a filtered d dimensional simplicial complex is simply the standard homology of a particular graded module over a polynomial ring. Our analysis establishes the existence of a simple description of persistent homology groups over arbitrary fields. It also enabl ..."
Abstract

Cited by 101 (20 self)
 Add to MetaCart
We show that the persistent homology of a filtered d dimensional simplicial complex is simply the standard homology of a particular graded module over a polynomial ring. Our analysis establishes the existence of a simple description of persistent homology groups over arbitrary fields. It also enables us to derive a natural algorithm for computing persistent homology of spaces in arbitrary dimension over any field. This results generalizes and extends the previously known algorithm that was restricted to subcomplexes of S and Z2 coefficients. Finally, our study implies the lack of a simple classification over nonfields. Instead, we give an algorithm for computing individual persistent homology groups over an arbitrary PIDs in any dimension.
Random projections of smooth manifolds
 Foundations of Computational Mathematics
, 2006
"... We propose a new approach for nonadaptive dimensionality reduction of manifoldmodeled data, demonstrating that a small number of random linear projections can preserve key information about a manifoldmodeled signal. We center our analysis on the effect of a random linear projection operator Φ: R N ..."
Abstract

Cited by 83 (23 self)
 Add to MetaCart
We propose a new approach for nonadaptive dimensionality reduction of manifoldmodeled data, demonstrating that a small number of random linear projections can preserve key information about a manifoldmodeled signal. We center our analysis on the effect of a random linear projection operator Φ: R N → R M, M < N, on a smooth wellconditioned Kdimensional submanifold M ⊂ R N. As our main theoretical contribution, we establish a sufficient number M of random projections to guarantee that, with high probability, all pairwise Euclidean and geodesic distances between points on M are wellpreserved under the mapping Φ. Our results bear strong resemblance to the emerging theory of Compressed Sensing (CS), in which sparse signals can be recovered from small numbers of random linear measurements. As in CS, the random measurements we propose can be used to recover the original data in R N. Moreover, like the fundamental bound in CS, our requisite M is linear in the “information level” K and logarithmic in the ambient dimension N; we also identify a logarithmic dependence on the volume and conditioning of the manifold. In addition to recovering faithful approximations to manifoldmodeled signals, however, the random projections we propose can also be used to discern key properties about the manifold. We discuss connections and contrasts with existing techniques in manifold learning, a setting where dimensionality reducing mappings are typically nonlinear and constructed adaptively from a set of sampled training data.
GLIDER: Gradient landmarkbased distributed routing for sensor networks
 in Proc. of the 24th Conference of the IEEE Communication Society (INFOCOM
, 2005
"... Routing (GLIDER), a novel naming/addressing scheme and associated routing algorithm, for a network of wireless communicating nodes. We assume that the nodes are fixed (though their geographic locations are not necessarily known), and that each node can communicate wirelessly with some of its geograp ..."
Abstract

Cited by 75 (25 self)
 Add to MetaCart
Routing (GLIDER), a novel naming/addressing scheme and associated routing algorithm, for a network of wireless communicating nodes. We assume that the nodes are fixed (though their geographic locations are not necessarily known), and that each node can communicate wirelessly with some of its geographic neighbors—a common scenario in sensor networks. We develop a protocol which in a preprocessing phase discovers the global topology of the sensor field and, as a byproduct, partitions the nodes into routable tiles—regions where the node placement is sufficiently dense and regular that local greedy methods can work well. Such global topology includes not just connectivity but also higher order topological features, such as the presence of holes. We address each node by the name of the tile containing it and a set of local coordinates derived from connectivity graph distances between the node and certain landmark nodes associated with its own and neighboring tiles. We use the tile adjacency graph for global route planning and the local coordinates for realizing actual inter and intratile routes. We show that efficient loadbalanced global routing can be implemented quite simply using such a scheme.
Barcodes: The persistent topology of data
, 2007
"... Abstract. This article surveys recent work of Carlsson and collaborators on applications of computational algebraic topology to problems of feature detection and shape recognition in highdimensional data. The primary mathematical tool considered is a homology theory for pointcloud data sets—persis ..."
Abstract

Cited by 43 (2 self)
 Add to MetaCart
Abstract. This article surveys recent work of Carlsson and collaborators on applications of computational algebraic topology to problems of feature detection and shape recognition in highdimensional data. The primary mathematical tool considered is a homology theory for pointcloud data sets—persistent homology—and a novel representation of this algebraic characterization— barcodes. We sketch an application of these techniques to the classification of natural images. 1. The shape of data When a topologist is asked, “How do you visualize a fourdimensional object?” the appropriate response is a Socratic rejoinder: “How do you visualize a threedimensional object? ” We do not see in three spatial dimensions directly, but rather via sequences of planar projections integrated in a manner that is sensed if not comprehended. We spend a significant portion of our first year of life learning how to infer threedimensional spatial data from paired planar projections. Years of practice have tuned a remarkable ability to extract global structure from representations
Persistent Homology  a Survey
 CONTEMPORARY MATHEMATICS
"... Persistent homology is an algebraic tool for measuring topological features of shapes and functions. It casts the multiscale organization we frequently observe in nature into a mathematical formalism. Here we give a record of the short history of persistent homology and present its basic concepts. ..."
Abstract

Cited by 36 (1 self)
 Add to MetaCart
Persistent homology is an algebraic tool for measuring topological features of shapes and functions. It casts the multiscale organization we frequently observe in nature into a mathematical formalism. Here we give a record of the short history of persistent homology and present its basic concepts. Besides the mathematics we focus on algorithms and mention the various connections to applications, including to biomolecules, biological networks, data analysis, and geometric modeling.
Vines and vineyards by updating persistence in linear time
 In “Proc. 22nd
, 2006
"... Persistent homology is the mathematical core of recent work on shape, including reconstruction, recognition, and matching. Its pertinent information is encapsulated by a pairing of the critical values of a function, visualized by points forming a diagram in the plane. The original algorithm in [10] ..."
Abstract

Cited by 31 (9 self)
 Add to MetaCart
Persistent homology is the mathematical core of recent work on shape, including reconstruction, recognition, and matching. Its pertinent information is encapsulated by a pairing of the critical values of a function, visualized by points forming a diagram in the plane. The original algorithm in [10] computes the pairs from an ordering of the simplices in a triangulation and takes worstcase time cubic in the number of simplices. The main result of this paper is an algorithm that maintains the pairing in worstcase linear time per transposition in the ordering. A sideeffect of the algorithm’s analysis is an elementary proof of the stability of persistence diagrams [7] in the special case of piecewiselinear functions. We use the algorithm to compute 1parameter families of diagrams which we apply to the study of protein folding trajectories. Categories and Subject Descriptors F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—Geometrical problems and
Topology and Data
, 2008
"... An important feature of modern science and engineering is that data of various kinds is being produced at an unprecedented rate. This is so in part because of new experimental methods, and in part because of the increase in the availability of high powered computing technology. It is also clear that ..."
Abstract

Cited by 30 (0 self)
 Add to MetaCart
An important feature of modern science and engineering is that data of various kinds is being produced at an unprecedented rate. This is so in part because of new experimental methods, and in part because of the increase in the availability of high powered computing technology. It is also clear that the nature of the data
Proximity of persistence modules and their diagrams
, 2008
"... Topological persistence has proven to be a key concept for the study of realvalued functions defined over topological spaces. Its validity relies on the fundamental property that the persistence diagrams of nearby functions are close. However, existing stability results are restricted to the case o ..."
Abstract

Cited by 30 (7 self)
 Add to MetaCart
Topological persistence has proven to be a key concept for the study of realvalued functions defined over topological spaces. Its validity relies on the fundamental property that the persistence diagrams of nearby functions are close. However, existing stability results are restricted to the case of continuous functions defined over triangulable spaces. In this paper, we present new stability results that do not suffer from the above restrictions. Furthermore, by working at an algebraic level directly, we make it possible to compare the persistence diagrams of functions defined over different spaces, thus enabling a variety of new applications of the concept of persistence. Along the way, we extend the definition of persistence diagram to a larger setting, introduce the notions of discretization of a persistence module and associated pixelization map, define a proximity measure between persistence modules, and show how to interpolate between persistence modules, thereby lending a more analytic character to this otherwise algebraic setting. We believe these new theoretical concepts and tools shed new light on the theory of persistence, in addition to simplifying proofs and enabling new applications.
A Barcode Shape Descriptor for Curve Point Cloud Data
, 2004
"... In this paper, we present a complete computational pipeline for extracting a compact shape descriptor for curve point cloud data (PCD). Our shape descriptor, called a barcode, is based on a blend of techniques from differential geometry and algebraic topology. We also provide a metric over the space ..."
Abstract

Cited by 24 (15 self)
 Add to MetaCart
In this paper, we present a complete computational pipeline for extracting a compact shape descriptor for curve point cloud data (PCD). Our shape descriptor, called a barcode, is based on a blend of techniques from differential geometry and algebraic topology. We also provide a metric over the space of barcodes, enabling fast comparison of PCDs for shape recognition and clustering. To demonstrate the feasibility of our approach, we implement our pipeline and provide experimental evidence in shape classification and parametrization.