Results 1 
4 of
4
Set Theory and Physics
 FOUNDATIONS OF PHYSICS, VOL. 25, NO. 11
, 1995
"... Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) hr chaos theory, (ii) for paradoxical decompositions of soli ..."
Abstract

Cited by 8 (7 self)
 Add to MetaCart
Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) hr chaos theory, (ii) for paradoxical decompositions of solid threedimensional objects, (iii) in the theory of effective computability (ChurchTurhrg thesis) related to the possible "solution of supertasks," and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for" physical applications are discussed: Cantorian "naive" (i.e., nonaxiomatic) set theory, contructivism, and operationalism, hr the arrthor's ophrion, an attitude of "suspended attention" (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same thne, physicists shouM be open to "bizarre" or "mindboggling" new formalisms, which treed not be operationalizable or testable at the thne of their " creation, but which may successfully lead to novel fields of phenomenology and technology.
Conventions in Relativity Theory and Quantum Mechanics
, 2002
"... ons. They lie at the very foundations of our world conceptions. Conventions serve as a sort of "scaffolding" from which we construct our scientific worldview. Yet, they are so simple and almost selfevident that they are hardly mentioned and go unreflected. To the author, this unreflecte ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
ons. They lie at the very foundations of our world conceptions. Conventions serve as a sort of "scaffolding" from which we construct our scientific worldview. Yet, they are so simple and almost selfevident that they are hardly mentioned and go unreflected. To the author, this unreflectedness and unawareness of conventionality appears to be the biggest problem related to conventions, especially if they are mistakenly considered as physical "facts" which are empirically testable. This confusion between assumption and observational, operational fact seems to be one of the biggest impediments for progressive research programs, in particular if they suggest postulates which are based on conventions different from the existing ones. In what follows we shall mainly review and discuss conventions in the two dominating theories of the 20th century: quantum mechanics and relativity theory. 2. CONVENTIONALITY OF THE CONSTANCY OF THE CHARACTERISTIC SPEED Sup
Quantum algorithmic information theory
, 2008
"... The agenda of quantum algorithmic information theory, ordered ‘topdown, ’ is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits ..."
Abstract
 Add to MetaCart
The agenda of quantum algorithmic information theory, ordered ‘topdown, ’ is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a twoport interferometer capable of arbitrary U(2) transformations. Basic to all these considerations is quantum theory, in particular Hilbert space quantum mechanics.