Results 1  10
of
12
Concurrent Games and Full Completeness
, 1998
"... A new concurrent form of game semantics is introduced. This overcomes the problems which had arisen with previous, sequential forms of game semantics in modelling Linear Logic. It also admits an elegant and robust formalization. A Full Completeness Theorem for MultiplicativeAdditive Linear Logic is ..."
Abstract

Cited by 50 (17 self)
 Add to MetaCart
A new concurrent form of game semantics is introduced. This overcomes the problems which had arisen with previous, sequential forms of game semantics in modelling Linear Logic. It also admits an elegant and robust formalization. A Full Completeness Theorem for MultiplicativeAdditive Linear Logic is proved for this semantics. 1 Introduction This paper contains two main contributions: ffl the introduction of a new form of game semantics, which we call concurrent games. ffl a proof of full completeness of this semantics for MultiplicativeAdditive Linear Logic. We explain the significance of each of these in turn. Concurrent games Traditional forms of game semantics which have appeared in logic and computer science have been sequential in format: a play of the game is formalized as a sequence of moves. The key feature of this sequential format is the existence of a global schedule (or polarization) : in each (finite) position, it is (exactly) one player's turn to move 1 . This seq...
Proofs nets for unitfree multiplicativeadditive linear logic
 18th IEEE Intl. Symp. Logic in Computer Science (LICS’03
, 2003
"... A cornerstone of the theory of proof nets for unitfree multiplicative linear logic (MLL) is the abstract representation of cutfree proofs modulo inessential commutations of rules. The only known extension to additives, based on monomial weights, fails to preserve this key feature: a host of cutfr ..."
Abstract

Cited by 40 (4 self)
 Add to MetaCart
A cornerstone of the theory of proof nets for unitfree multiplicative linear logic (MLL) is the abstract representation of cutfree proofs modulo inessential commutations of rules. The only known extension to additives, based on monomial weights, fails to preserve this key feature: a host of cutfree monomial proof nets can correspond to the same cutfree proof. Thus the problem of finding a satisfactory notion of proof net for unitfree multiplicativeadditive linear logic (MALL) has remained open since the inception of linear logic in 1986. We present a new definition of MALL proof net which remains faithful to the cornerstone of the MLL theory. 1
Sequentiality vs. Concurrency in Games and Logic
 Math. Structures Comput. Sci
, 2001
"... Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic. ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic.
Models of Lambda Calculi and Linear Logic: Structural, Equational and ProofTheoretic Characterisations
, 1994
"... Models of Lambda Calculi and Linear Logic: Structural, Equational and ProofTheoretic Characterisations Ralph Loader, of St. Hugh's College, Oxford. Thesis submitted for the Degree of D.Phil. Michaelmas term, 1994. T his thesis is an investigation into models of typed calculi and of linear logic. ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
Models of Lambda Calculi and Linear Logic: Structural, Equational and ProofTheoretic Characterisations Ralph Loader, of St. Hugh's College, Oxford. Thesis submitted for the Degree of D.Phil. Michaelmas term, 1994. T his thesis is an investigation into models of typed calculi and of linear logic. The models we investigate are denotational in nature; we construct various categories, in which types (or formulae) are interpreted by objects, and terms (proofs) by morphisms. The results we investigate compare particular properties of the syntax and the semantics of a calculus, by trying to use syntax to characterise features of a model, or vice versa. There are four chapters in the thesis, one each on linear logic and the simply typed calculus, and two on inductive datatypes. In chapter one, we look at some models of linear logic, and prove a full completeness result for multiplicative linear logic. We form a model, the linear logical predicates , by abstracting a little the structure ...
Games in the Semantics of Programming Languages
 Dept. of Philosophy, University of Amsterdam
, 1997
"... ion for PCF Motivated by the full completeness results, it became of compelling interest to reexamine perhaps the bestknown "open problem" in the semantics of programming languages, namely the "Full Abstraction problem for PCF", using the new tools provided by game semantics. 2 PCF is a highero ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
ion for PCF Motivated by the full completeness results, it became of compelling interest to reexamine perhaps the bestknown "open problem" in the semantics of programming languages, namely the "Full Abstraction problem for PCF", using the new tools provided by game semantics. 2 PCF is a higherorder functional programming language; modulo issues of the parameterpassing strategies, it forms a fragment of any programming language with higherorder procedures (which includes any reasonably expressive objectoriented language). The aspect of the Full Abstraction problem I personally found most interesting was: to construct a syntaxindependent model in which every element is the denotation of some program (note the analogy with full completeness, whose definition had in turn been motivated in part by this aspect of full abstraction). This is not how the problem was originally formulated, but by "general abstract nonsense", given such a model one can always quotient it to get a fully ab...
Equational Theories for Inductive Types
 Annals of Pure and Applied Logic
, 1997
"... This paper provides characterisations of the equational theory of the per model of a typed lambda calculus with inductive types. The characterisation may be cast as a full abstraction result; in other words we show that the equations between terms valid in this model coincides with a certain synt ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
This paper provides characterisations of the equational theory of the per model of a typed lambda calculus with inductive types. The characterisation may be cast as a full abstraction result; in other words we show that the equations between terms valid in this model coincides with a certain syntactically defined equivalence relation. Along the way we give other characterisations of this equivalence; from below, from above, and from a domain model; a version of the KreiselLacombeShoenfield theorem allows us to transfer the result from the domain model to the per model. 0 Introduction This paper concerns a typed calculus with inductive types which correspond semantically to initial algebras of (covariant) functors; the calculus lies between Godel's T and Girard's F in prooftheoretic strength. The goal of the paper is to analyse the structure of the model of this calculus given by the category PER of partial equivalence relations over the natural numbers. We shall show that ...
Linear L"auchli semantics
 Annals Pure Appl. Logic
, 1996
"... Dedicated to the memory of Moez Alimohamed ..."
On Double Categories and Multiplicative Linear Logic
, 1999
"... this article, we attack the converse problem of explaining semantics as an artifact of syntax, in other words, of extracting the meaning of a program from syntactical considerations on its dynamics, or the way it interacts with the environment. We start the analysis with a very simple slogan, where ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
this article, we attack the converse problem of explaining semantics as an artifact of syntax, in other words, of extracting the meaning of a program from syntactical considerations on its dynamics, or the way it interacts with the environment. We start the analysis with a very simple slogan, where we use module to mean procedure, in the fashion of (Girard 1987b):
Intensional double glueing, biextensional collapse, and the Chu construction
 In Mathematical Foundations of Programming Semantics
, 2004
"... The superficial similarity between the Chu construction and the HylandTan double glueing construction G has been observed widely. This paper establishes a more formal mathematical relationship between the two. We show that double glueing on relations subsumes the Chu construction on sets: we presen ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
The superficial similarity between the Chu construction and the HylandTan double glueing construction G has been observed widely. This paper establishes a more formal mathematical relationship between the two. We show that double glueing on relations subsumes the Chu construction on sets: we present a full monoidal embedding of the category chu(Set, K) of biextensional Chu spaces over K into G(Rel K), and a full monoidal embedding of the category Chu(Set, K) of Chu spaces over K into IG(Rel K), where we define IG, the intensional double glueing construction, by substituting multisets for sets in G. We define a biextensional collapse from IG to G which extends the familiar notion on Chu spaces. This yields a new interpretation of the monic specialisation implicit in G as a form of biextensionality. 1