Results 1  10
of
11
Geometry of Interaction and Linear Combinatory Algebras
, 2000
"... this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by S ..."
Abstract

Cited by 44 (10 self)
 Add to MetaCart
this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by Stefanescu (Stefanescu 2000).) However, the first author realized, following a stimulating discussion with Gordon Plotkin, that traced monoidal categories provided a common denominator for the axiomatics of both the Girardstyle and AbramskyJagadeesanstyle versions of the Geometry of Interaction, at the basic level of the multiplicatives. This insight was presented in (Abramsky 1996), in which Girardstyle GoI was dubbed "particlestyle", since it concerns information particles or tokens flowing around a network, while the AbramskyJagadeesan style GoI was dubbed "wavestyle", since it concerns the evolution of a global information state or "wave". Formally, this distinction is based on whether the tensor product (i.e. the symmetric monoidal structure) in the underlying category is interpreted as a coproduct (particle style) or as a product (wave style). This computational distinction between coproduct and product interpretations of the same underlying network geometry turned out to have been partially anticipated, in a rather di#erent context, in a pioneering paper by E. S. Bainbridge (Bainbridge 1976), as observed by Dusko Pavlovic. These two forms of interpretation, and ways of combining them, have also been studied recently in (Stefanescu 2000). He uses the terminology "additive" for coproductbased (i.e. our "particlestyle") and "multiplicative" for productbased (i.e. our "wavestyle"); this is not suitable for our purposes, because of the clash with Linear Logic term...
Physical traces: Quantum vs. classical information processing
 In Proceedings of Category Theory and Computer Science 2002 (CTCS’02), volume 69 of Electronic Notes in Theoretical Computer Science. Elsevier Science
, 2003
"... a setting that enables qualitative differences between classical and quantum processes to be explored. The key construction is the physical interpretation/realization of the traced monoidal categories of finitedimensional vector spaces with tensor product as monoidal structure and of finite sets an ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
a setting that enables qualitative differences between classical and quantum processes to be explored. The key construction is the physical interpretation/realization of the traced monoidal categories of finitedimensional vector spaces with tensor product as monoidal structure and of finite sets and relations with Cartesian product as monoidal structure, both of them providing a socalled wavestyle GoI. The developments in this paper reveal that envisioning state update due to quantum measurement as a process provides a powerful tool for developing highlevel approaches to quantum information processing.
Sequentiality vs. Concurrency in Games and Logic
 Math. Structures Comput. Sci
, 2001
"... Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic. ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic.
Stratified Bounded Affine Logic for Logarithmic Space
"... A number of complexity classes, most notably PTIME, have been characterised by subsystems of linear logic. In this paper we show that the functions computable in logarithmic space can also be characterised by a restricted version of linear logic. We introduce Stratified Bounded Affine Logic (SBAL), ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
A number of complexity classes, most notably PTIME, have been characterised by subsystems of linear logic. In this paper we show that the functions computable in logarithmic space can also be characterised by a restricted version of linear logic. We introduce Stratified Bounded Affine Logic (SBAL), a restricted version of Bounded Linear Logic, in which not only the modality! but also the universal quantifier is bounded by a resource polynomial. We show that the proofs of certain sequents in SBAL represent exactly the functions computable logarithmic space. The proof that SBALproofs can be compiled to LOGSPACE functions rests on modelling computation by interaction dialogues in the style of game semantics. We formulate the compilation of SBALproofs to spaceefficient programs as an interpretation in a realisability model, in which realisers are taken from a Geometry of Interaction situation.
The Uniformity Principle on Traced Monoidal Categories
 In Proceedings of CTCS’02, volume 69 of ENTCS
, 2003
"... The uniformity principle for traced monoidal categories has been introduced as a natural generalization of the uniformity principle (Plotkin's principle) for fixpoint operators in domain theory. We show that this notion can be used for constructing new traced monoidal categories from known ones. Som ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
The uniformity principle for traced monoidal categories has been introduced as a natural generalization of the uniformity principle (Plotkin's principle) for fixpoint operators in domain theory. We show that this notion can be used for constructing new traced monoidal categories from known ones. Some classical examples like the Scott induction principle are shown to be instances of these constructions. We also characterize some specific cases of our constructions as suitable enriched limits. 1
Towards a typed geometry of interaction
, 2005
"... We introduce a typed version of Girard’s Geometry of Interaction, called Multiobject GoI (MGoI) semantics. We give an MGoI interpretation for multiplicative linear logic (MLL) without units which applies to new kinds of models, including finite dimensional vector spaces. For MGoI (i) we develop a v ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
We introduce a typed version of Girard’s Geometry of Interaction, called Multiobject GoI (MGoI) semantics. We give an MGoI interpretation for multiplicative linear logic (MLL) without units which applies to new kinds of models, including finite dimensional vector spaces. For MGoI (i) we develop a version of partial traces and trace ideals (related to previous work of Abramsky, Blute, and Panangaden); (ii) we do not require the existence of a reflexive object for our interpretation (the original GoI 1 and 2 were untyped and hence involved a bureaucracy of domain equation isomorphisms); (iii) we introduce an abstract notion of orthogonality (related to work of Hyland and Schalk) and use this to develop a version of Girard’s theory of types, datum and algorithms in our setting, (iv) we prove appropriate Soundness and Completeness Theorems for our interpretations in partially traced categories with orthogonality; (v) we end with an application to completeness of (the original) untyped GoI in a unique decomposition category.
Proofs as Polynomials
"... Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be
Traces for Coalgebraic Components
 MATH. STRUCT. IN COMP. SCIENCE
, 2010
"... This paper contributes a feedback operator, in the form of a monoidal trace, to the theory of coalgebraic, statebased modelling of components. The feedback operator on components is shown to satisfy the trace axioms of Joyal, Street and Verity. We employ McCurdy’s tube diagrams, an extension of sta ..."
Abstract
 Add to MetaCart
This paper contributes a feedback operator, in the form of a monoidal trace, to the theory of coalgebraic, statebased modelling of components. The feedback operator on components is shown to satisfy the trace axioms of Joyal, Street and Verity. We employ McCurdy’s tube diagrams, an extension of standard string diagrams for monoidal categories, for representing and manipulating component diagrams. The microcosm principle then yields a canonical “inner” traced monoidal structure on the category of resumptions (elements of final coalgebras / components). This generalises an observation by Abramsky, Haghverdi and Scott.
Categories for Imperative Semantics PLDG Seminar
"... The aim of these notes is to provide an introduction to category theory, and a motivation for its use in denotational semantics. I will do this by showing how to apply it to give an abstract semantics to a simple imperative language. These notes are loosely based ..."
Abstract
 Add to MetaCart
The aim of these notes is to provide an introduction to category theory, and a motivation for its use in denotational semantics. I will do this by showing how to apply it to give an abstract semantics to a simple imperative language. These notes are loosely based
ON THE FUNCTOR ℓ 2
"... and both categories are enriched over algebraic domains. The functor preserves daggers, monoidal structures, enrichment, and various (co)limits, but has no adjoints. Up to unitaries, its direct image consists precisely of the partial isometries, but its essential image consists of all continuous lin ..."
Abstract
 Add to MetaCart
and both categories are enriched over algebraic domains. The functor preserves daggers, monoidal structures, enrichment, and various (co)limits, but has no adjoints. Up to unitaries, its direct image consists precisely of the partial isometries, but its essential image consists of all continuous linear maps between Hilbert spaces. 1.