Results 1 
3 of
3
Fast Priority Queues for Cached Memory
 ACM Journal of Experimental Algorithmics
, 1999
"... This paper advocates the adaption of external memory algorithms to this purpose. This idea and the practical issues involved are exemplified by engineering a fast priority queue suited to external memory and cached memory that is based on kway merging. It improves previous external memory algorithm ..."
Abstract

Cited by 46 (7 self)
 Add to MetaCart
This paper advocates the adaption of external memory algorithms to this purpose. This idea and the practical issues involved are exemplified by engineering a fast priority queue suited to external memory and cached memory that is based on kway merging. It improves previous external memory algorithms by constant factors crucial for transferring it to cached memory. Running in the cache hierarchy of a workstation the algorithm is at least two times faster than an optimized implementation of binary heaps and 4ary heaps for large inputs
Accessing Multiple Sequences Through Set Associative Caches
 In Proc
, 1999
"... The cache hierarchy prevalent in todays high performance processors has to be taken into account in order to design algorithms which perform well in practice. We start from the empirical observation that external memory algorithms often turn out to be good algorithms for cached memory. This is n ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
The cache hierarchy prevalent in todays high performance processors has to be taken into account in order to design algorithms which perform well in practice. We start from the empirical observation that external memory algorithms often turn out to be good algorithms for cached memory. This is not self evident since caches have a fixed and quite restrictive algorithm choosing the content of the cache. We investigate the impact of this restriction for the frequently occurring case of access to multiple sequences. We show that any access pattern to k = \Theta(M=B ) sequential data streams can be efficiently supported on an away set associative cache with capacity M and line size B. The bounds are tight up to lower order terms.
Engineering an External Memory Minimum Spanning Tree Algorithm
 IN PROC. 3RD IFIP INTL. CONF. ON THEORETICAL COMPUTER SCIENCE
, 2004
"... We develop an external memory algorithm for computing minimum spanning trees. The algorithm is considerably simpler than previously known external memory algorithms for this problem and needs a factor of at least four less I/Os for realistic inputs. Our implementation indicates that this algorithm ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
We develop an external memory algorithm for computing minimum spanning trees. The algorithm is considerably simpler than previously known external memory algorithms for this problem and needs a factor of at least four less I/Os for realistic inputs. Our implementation indicates that this algorithm processes graphs only limited by the disk capacity of most current machines in time no more than a factor 2–5 of a good internal algorithm with sufficient memory space.