Results 1  10
of
90
SmallBias Probability Spaces: Efficient Constructions and Applications
 SIAM J. Comput
, 1993
"... We show how to efficiently construct a small probability space on n binary random variables such that for every subset, its parity is either zero or one with "almost" equal probability. They are called fflbiased random variables. The number of random bits needed to generate the random var ..."
Abstract

Cited by 274 (15 self)
 Add to MetaCart
(Show Context)
We show how to efficiently construct a small probability space on n binary random variables such that for every subset, its parity is either zero or one with "almost" equal probability. They are called fflbiased random variables. The number of random bits needed to generate the random variables is O(log n + log 1 ffl ). Thus, if ffl is polynomially small, then the size of the sample space is also polynomial. Random variables that are fflbiased can be used to construct "almost" kwise independent random variables where ffl is a function of k. These probability spaces have various applications: 1. Derandomization of algorithms: many randomized algorithms that require only k wise independence of their random bits (where k is bounded by O(log n)), can be derandomized by using fflbiased random variables. 2. Reducing the number of random bits required by certain randomized algorithms, e.g., verification of matrix multiplication. 3. Exhaustive testing of combinatorial circui...
Identifying the minimal transversals of a hypergraph and related problems
 SIAM Journal on Computing
, 1995
"... The paper considers two decision problems on hypergraphs, hypergraph saturation and recognition of the transversal hypergraph, and discusses their significance for several search problems in applied computer science. Hypergraph saturation, i.e., given a hypergraph H, decide if every subset of vertic ..."
Abstract

Cited by 145 (7 self)
 Add to MetaCart
The paper considers two decision problems on hypergraphs, hypergraph saturation and recognition of the transversal hypergraph, and discusses their significance for several search problems in applied computer science. Hypergraph saturation, i.e., given a hypergraph H, decide if every subset of vertices is contained in or contains some edge of H, is shown to be coNPcomplete. A certain subproblem of hypergraph saturation, the saturation of simple hypergraphs, is shown to be computationally equivalent to transversal hypergraph recognition, i.e., given two hypergraphs H 1; H 2, decide if the sets in H 2 are all the minimal transversals of H 1. The complexity of the search problem related to the recognition of the transversal hypergraph, the computation of the transversal hypergraph, is an open problem. This task needs time exponential in the input size, but it is unknown whether an outputpolynomial algorithm exists for this problem. For several important subcases, for instance if an upper or lower bound is imposed on the edge size or for acyclic hypergraphs, we present outputpolynomial algorithms. Computing or recognizing the minimal transversals of a hypergraph is a frequent problem in practice, which is pointed out by identifying important applications in database theory, Boolean switching theory, logic, and AI, particularly in modelbased diagnosis.
A Functional Approach to External Graph Algorithms
 Algorithmica
, 1998
"... . We present a new approach for designing external graph algorithms and use it to design simple external algorithms for computing connected components, minimum spanning trees, bottleneck minimum spanning trees, and maximal matchings in undirected graphs and multigraphs. Our I/O bounds compete w ..."
Abstract

Cited by 102 (2 self)
 Add to MetaCart
. We present a new approach for designing external graph algorithms and use it to design simple external algorithms for computing connected components, minimum spanning trees, bottleneck minimum spanning trees, and maximal matchings in undirected graphs and multigraphs. Our I/O bounds compete with those of previous approaches. Unlike previous approaches, ours is purely functionalwithout side effectsand is thus amenable to standard checkpointing and programming language optimization techniques. This is an important practical consideration for applications that may take hours to run. 1 Introduction We present a divideandconquer approach for designing external graph algorithms, i.e., algorithms on graphs that are too large to fit in main memory. Our approach is simple to describe and implement: it builds a succession of graph transformations that reduce to sorting, selection, and a recursive bucketing technique. No sophisticated data structures are needed. We apply our t...
On The Power Of TwoPoints Based Sampling
 Journal of Complexity
, 1989
"... The purpose of this note is to present a new sampling technique and to demonstrate some of its properties. The new technique consists of picking two elements at random, and deterministically generating (from them) a long sequence of pairwise independent elements. The sequence is guarantees to inters ..."
Abstract

Cited by 102 (19 self)
 Add to MetaCart
The purpose of this note is to present a new sampling technique and to demonstrate some of its properties. The new technique consists of picking two elements at random, and deterministically generating (from them) a long sequence of pairwise independent elements. The sequence is guarantees to intersect, with high probability, any set of nonnegligible density. 1. Introduction In recent years the role of randomness in computation has become more and more dominant. Randomness was used to speed up sequential computations (e.g. primality testing, testing polynomial identities etc.), but its effect on parallel and distributed computation is even more impressive. In either cases the solutions are typically presented such that they are guarateed to produce the desired result with some nonnegligible probability. It is implicitly suggested that if a higher degree of confidence is required the algorithm should be run several times, each time using different coin tosses. Since the coin tosses f...
The algorithmic aspects of the Regularity Lemma
 J. Algorithms
, 1994
"... The Regularity Lemma of Szemerédi is a result that asserts that every graph can be partitioned in a certain regular way. This result has numerous applications, but its known proof is not algorithmic. Here we first demonstrate the computational difficulty of finding a regular partition; we show that ..."
Abstract

Cited by 102 (30 self)
 Add to MetaCart
(Show Context)
The Regularity Lemma of Szemerédi is a result that asserts that every graph can be partitioned in a certain regular way. This result has numerous applications, but its known proof is not algorithmic. Here we first demonstrate the computational difficulty of finding a regular partition; we show that deciding if a given partition of an input graph satisfies the properties guaranteed by the lemma is coNPcomplete. However, we also prove that despite this difficulty the lemma can be made constructive; we show how to obtain, for any input graph, a partition with the properties guaranteed by the lemma, efficiently. The desired partition, for an nvertex graph, can be found in time O(M(n)), where M(n) = O(n 2.376) is the time needed to multiply two n by n matrices with 0, 1entries over the integers. The algorithm can be parallelized and implemented in NC 1. Besides the curious phenomenon of exhibiting a natural problem in which the search for a solution is easy whereas the decision if a given instance is a solution is difficult (if P and NP differ), our constructive version of the Regularity Lemma supplies efficient sequential and parallel algorithms for many problems, some of which are naturally motivated by the study of various graph embedding and graph coloring problems.
Network Decomposition and Locality in Distributed Computation (Extended Abstract)
, 1989
"... ) Baruch Awerbuch Department of Mathematics and Laboratory for Computer Science M.I.T. Cambridge, MA 02139 Andrew V. Goldberg y Department of Computer Science Stanford University Stanford, CA 94305 Michael Luby z International Computer Science Institute Berkeley, CA 94704 Serge A. Plo ..."
Abstract

Cited by 82 (5 self)
 Add to MetaCart
(Show Context)
) Baruch Awerbuch Department of Mathematics and Laboratory for Computer Science M.I.T. Cambridge, MA 02139 Andrew V. Goldberg y Department of Computer Science Stanford University Stanford, CA 94305 Michael Luby z International Computer Science Institute Berkeley, CA 94704 Serge A. Plotkin x Department of Computer Science Stanford University Stanford, CA 94305 May 1989 Abstract We introduce a concept of network decomposition, the essence of which is to partition an arbitrary graph into smalldiameter connected components, such that the graph created by contracting each component into a single node has low chromatic number. We present an efficient distributed algorithm for constructing such a decomposition, and demonstrate its use for design of efficient distributed algorithms. Our method yields new deterministic distributed algorithms for finding a maximal independent set and for (\Delta + 1)coloring of graphs with maximum degree \Delta. These algorithms run...
Parallel SymmetryBreaking in Sparse Graphs
 SIAM J. Disc. Math
, 1987
"... We describe efficient deterministic techniques for breaking symmetry in parallel. These techniques work well on rooted trees and graphs of constant degree or genus. Our primary technique allows us to 3color a rooted tree in O(lg n) time on an EREW PRAM using a linear number of processors. We use th ..."
Abstract

Cited by 80 (2 self)
 Add to MetaCart
(Show Context)
We describe efficient deterministic techniques for breaking symmetry in parallel. These techniques work well on rooted trees and graphs of constant degree or genus. Our primary technique allows us to 3color a rooted tree in O(lg n) time on an EREW PRAM using a linear number of processors. We use these techniques to construct fast linear processor algorithms for several problems, including (\Delta + 1)coloring constantdegree graphs and 5coloring planar graphs. We also prove lower bounds for 2coloring directed lists and for finding maximal independent sets in arbitrary graphs. 1 Introduction Some problems for which trivial sequential algorithms exist appear to be much harder to solve in a parallel framework. When converting a sequential algorithm to a parallel one, at each step of the parallel algorithm we have to choose a set of operations which may be executed in parallel. Often, we have to choose these operations from a large set A preliminary version of this paper appear...
A fast and simple randomized parallel algorithm for the maximal . . .
, 1986
"... A simple parallel randomized algorithm to find a maximal independent set in a graph G = (V, E) on n vertices is presented. Its expected running time on a concurrentread concurrentwrite PRAM with 0 ( 1 E 1 d,,) processors is O(log n), where d,, denotes the maximum degree. On an exclusiveread exclu ..."
Abstract

Cited by 65 (0 self)
 Add to MetaCart
A simple parallel randomized algorithm to find a maximal independent set in a graph G = (V, E) on n vertices is presented. Its expected running time on a concurrentread concurrentwrite PRAM with 0 ( 1 E 1 d,,) processors is O(log n), where d,, denotes the maximum degree. On an exclusiveread exclusivewrite PRAM with 0 ( 1 El) processors the algorithm runs in O(log2n). Previously, an O(log4n) deterministic algorithm was given by Karp and Wigderson for the EREWPRAM model. This was recently (independently of our work) improved to O(log2n) by M. Luby. In both cases randomized algorithms depending on painvise independent choices were turned into deterministic algorithms. We comment on how randomized combinatorial algorithms whose analysis only depends on dwise rather than fully independent random choices (for some constant d) can be converted into deterministic algorithms. We apply a technique due to A. Joffe (1974) and obtain deterministic construction in fast parallel time of various combinatorial objects whose existence follows from probabilistic arguments.
Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions
 Algorithmica
, 1996
"... Small sample spaces with almost independent random variables are applied to design efficient sequential deterministic algorithms for two problems. The first algorithm, motivated by the attempt to design efficient algorithms for the All Pairs Shortest Path problem using fast matrix multiplication, so ..."
Abstract

Cited by 63 (5 self)
 Add to MetaCart
(Show Context)
Small sample spaces with almost independent random variables are applied to design efficient sequential deterministic algorithms for two problems. The first algorithm, motivated by the attempt to design efficient algorithms for the All Pairs Shortest Path problem using fast matrix multiplication, solves the problem of computing witnesses for the Boolean product of two matrices. That is, if A and B are two n by n matrices, and C = AB is their Boolean product, the algorithm finds for every entry Cij = 1 a witness: an index k so that Aik = Bkj = 1. Its running time exceeds that of computing the product of two n by n matrices with small integer entries by a polylogarithmic factor. The second algorithm is a nearly linear time deterministic procedure for constructing a perfect hash function for a given nsubset of {1,..., m}.
Removing Randomness in Parallel Computation Without a Processor Penalty
 Journal of Computer and System Sciences
, 1988
"... We develop some general techniques for converting randomized parallel algorithms into deterministic parallel algorithms without a blowup in the number of processors. One of the requirements for the application of these techniques is that the analysis of the randomized algorithm uses only pairwise in ..."
Abstract

Cited by 58 (1 self)
 Add to MetaCart
We develop some general techniques for converting randomized parallel algorithms into deterministic parallel algorithms without a blowup in the number of processors. One of the requirements for the application of these techniques is that the analysis of the randomized algorithm uses only pairwise independence. Our main new result is a parallel algorithm for coloring the vertices of an undirected graph using at most \Delta + 1 distinct colors in such a way that no two adjacent vertices receive the same color, where \Delta is the maximum degree of any vertex in the graph. The running time of the algorithm is O(log 3 n log log n) using a linear number of processors on a concurrent read, exclusive write (CREW) parallel random access machine (PRAM). 1 Our techniques also apply to several other problems, including the maximal independent set problem and the maximal matching problem. The application of the general technique to these last two problems is mostly of academic interest because...