Results 1 
8 of
8
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1291 (43 self)
 Add to MetaCart
A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leaveoneout method and the VCdimension are given. Experimental results on optical character recognition problems demonstrate the good generalization obtained when compared with other learning algorithms.
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 453 (52 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, assessing predictions, handling noisy data and outliers, improving the quality of predictions by tuning t parameters, interference between old and new data, implementing locally weighted learning e ciently, and applications of locally weighted learning. A companion paper surveys how locally weighted learning can be used in robot learning and control.
Locally Weighted Learning for Control
, 1996
"... Lazy learning methods provide useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of complex systems. This paper surveys ways in which locally weighted learning, a type of lazy learning, has been applied by us to control tasks. We ex ..."
Abstract

Cited by 159 (17 self)
 Add to MetaCart
Lazy learning methods provide useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of complex systems. This paper surveys ways in which locally weighted learning, a type of lazy learning, has been applied by us to control tasks. We explain various forms that control tasks can take, and how this affects the choice of learning paradigm. The discussion section explores the interesting impact that explicitly remembering all previous experiences has on the problem of learning to control.
Particle Filters for Mobile Robot Localization
, 2001
"... This article describes a family of methods, known as Monte Carlo localization (MCL) (Dellaert at al. 1999b, Fox et al. 1999b). The MCL algorithm is a particle filter combined with probabilistic models of robot perception and motion. Building on this, we will describe a variation of MCL which uses a ..."
Abstract

Cited by 94 (18 self)
 Add to MetaCart
This article describes a family of methods, known as Monte Carlo localization (MCL) (Dellaert at al. 1999b, Fox et al. 1999b). The MCL algorithm is a particle filter combined with probabilistic models of robot perception and motion. Building on this, we will describe a variation of MCL which uses a different proposal distribution (a mixture distribution) that facilitates fast recovery from global localization failures. As we will see, this proposal distribution has a range of advantages over that used in standard MCL, but it comes at the price that it is more difficult to implement, and it requires an algorithm for sampling poses from sensor measurements, which might be difficult to obtain. Finally, we will present an extension of MCL to cooperative multirobot localization of robots that can perceive each other during localization. All these approaches have been tested thoroughly in practice. Experimental results are provided to demonstrate their relative strengths and weaknesses in practical robot applications.
Very Fast EMbased Mixture Model Clustering Using Multiresolution kdtrees
 In Advances in Neural Information Processing Systems 11
, 1998
"... Clustering is importantinmany fields including manufacturing, biology, finance, and astronomy. Mixture models are a popular approach due to their statistical foundations, and EM is a very popular method for finding mixture models. EM, however, requires many accesses of the data, and thus has bee ..."
Abstract

Cited by 89 (4 self)
 Add to MetaCart
Clustering is importantinmany fields including manufacturing, biology, finance, and astronomy. Mixture models are a popular approach due to their statistical foundations, and EM is a very popular method for finding mixture models. EM, however, requires many accesses of the data, and thus has been dismissed as impractical (e.g. (Zhang, Ramakrishnan, & Livny, 1996)) for data mining of enormous datasets.
Efficient Locally Weighted Polynomial Regression Predictions
 In Proceedings of the 1997 International Machine Learning Conference
"... Locally weighted polynomial regression (LWPR) is a popular instancebased algorithm for learning continuous nonlinear mappings. For more than two or three inputs and for more than a few thousand datapoints the computational expense of predictions is daunting. We discuss drawbacks with previous appr ..."
Abstract

Cited by 81 (11 self)
 Add to MetaCart
Locally weighted polynomial regression (LWPR) is a popular instancebased algorithm for learning continuous nonlinear mappings. For more than two or three inputs and for more than a few thousand datapoints the computational expense of predictions is daunting. We discuss drawbacks with previous approaches to dealing with this problem, and present a new algorithm based on a multiresolution search of a quicklyconstructible augmented kdtree. Without needing to rebuild the tree, we can make fast predictions with arbitrary local weighting functions, arbitrary kernel widths and arbitrary queries. The paper begins with a new, faster, algorithm for exact LWPR predictions. Next we introduce an approximation that achieves up to a twoordersof magnitude speedup with negligible accuracy losses. Increasing a certain approximation parameter achieves greater speedups still, but with a correspondingly larger accuracy degradation. This is nevertheless useful during operations such as the early stages...
Improving Specificity in PDMs using a Hierarchical Approach
 In BMVC
, 1997
"... The Point Distribution Model (PDM) has proved useful for many tasks involving the location and tracking of deformable objects. A principal limitation is nonspecificity; in constructing a model to include all valid object shapes, the inclusion of some invalid shapes is unavoidable due to the linear ..."
Abstract

Cited by 27 (1 self)
 Add to MetaCart
The Point Distribution Model (PDM) has proved useful for many tasks involving the location and tracking of deformable objects. A principal limitation is nonspecificity; in constructing a model to include all valid object shapes, the inclusion of some invalid shapes is unavoidable due to the linear nature of the approach. Bregler and Omohundro [2] describe a `piecewise linear' method for applying constraints within model shape space, whereby principal component analysis is used on training data clusters in shape space to generate lower dimensional overlapping subspaces. Object shapes are constrained to lie within the union of these subspaces, thus improving the specificity of the model. This is an important development in itself, but its most useful quality is that it lends itself to automated training. Manual annotation of training examples has previously been necessary to ensure good specificity in PDMs, requiring expertise and time, and thus limiting the amount of training data that...
Vision and action
 IMAGE AND VISION COMPUTING
, 1995
"... Our work on Active Vision has recently focused on the computational modelling of navigational tasks, where our investigations were guided by the idea of approaching vision for behavioral systems in form of modules that are directly related to perceptual tasks. These studies led us to branch in vario ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
Our work on Active Vision has recently focused on the computational modelling of navigational tasks, where our investigations were guided by the idea of approaching vision for behavioral systems in form of modules that are directly related to perceptual tasks. These studies led us to branch in various directions and inquire into the problems that have to be addressed in order to obtain an overall understanding of perceptual systems. In this paper we present our views about the architecture of vision systems, about how totackle the design and analysis of perceptual systems, and promising future research directions. Our suggested approach for understanding behavioral vision to realize the relationship of perception and action builds on two earlier approaches, the Medusa philosophy [3] and the Synthetic approach [15]. The resulting framework calls for synthesizing an artificial vision system by studying vision competences of increasing complexity and at the same time pursuing the integration of the perceptual components with action and learning modules. We expect that Computer Vision research in the future will progress in tight collaboration with many other disciplines that are concerned with empirical approaches to vision, i.e. the understanding of biological vision. Throughout the paper we describe biological findings that motivate computational arguments which we believe will influence studies of Computer Vision in the near future.