Results 1  10
of
35
Guide to Elliptic Curve Cryptography
, 2004
"... Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.) Elliptic curves ..."
Abstract

Cited by 369 (17 self)
 Add to MetaCart
Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.) Elliptic curves also figured prominently in the recent proof of Fermat's Last Theorem by Andrew Wiles. Originally pursued for purely aesthetic reasons, elliptic curves have recently been utilized in devising algorithms for factoring integers, primality proving, and in publickey cryptography. In this article, we aim to give the reader an introduction to elliptic curve cryptosystems, and to demonstrate why these systems provide relatively small block sizes, highspeed software and hardware implementations, and offer the highest strengthperkeybit of any known publickey scheme.
The Elliptic Curve Digital Signature Algorithm (ECDSA)
, 1999
"... The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of the Digital Signature Algorithm (DSA). It was accepted in 1999 as an ANSI standard, and was accepted in 2000 as IEEE and NIST standards. It was also accepted in 1998 as an ISO standard, and is under consideratio ..."
Abstract

Cited by 102 (5 self)
 Add to MetaCart
The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of the Digital Signature Algorithm (DSA). It was accepted in 1999 as an ANSI standard, and was accepted in 2000 as IEEE and NIST standards. It was also accepted in 1998 as an ISO standard, and is under consideration for inclusion in some other ISO standards. Unlike the ordinary discrete logarithm problem and the integer factorization problem, no subexponentialtime algorithm is known for the elliptic curve discrete logarithm problem. For this reason, the strengthperkeybit is substantially greater in an algorithm that uses elliptic curves. This paper describes the ANSI X9.62 ECDSA, and discusses related security, implementation, and interoperability issues. Keywords: Signature schemes, elliptic curve cryptography, DSA, ECDSA.
Applications of Multilinear Forms to Cryptography
 Contemporary Mathematics
, 2002
"... We study the problem of finding efficiently computable nondegenerate multilinear maps from G 1 to G 2 , where G 1 and G 2 are groups of the same prime order, and where computing discrete logarithms in G 1 is hard. We present several applications to cryptography, explore directions for building such ..."
Abstract

Cited by 51 (7 self)
 Add to MetaCart
We study the problem of finding efficiently computable nondegenerate multilinear maps from G 1 to G 2 , where G 1 and G 2 are groups of the same prime order, and where computing discrete logarithms in G 1 is hard. We present several applications to cryptography, explore directions for building such maps, and give some reasons to believe that finding examples with n > 2 may be difficult.
Supersingular abelian varieties in cryptology
 Advances in Cryptology  CRYPTO 2002
"... Abstract. For certain security applications, including identity based encryption and short signature schemes, it is useful to have abelian varieties with security parameters that are neither too small nor too large. Supersingular abelian varieties are natural candidates for these applications. This ..."
Abstract

Cited by 45 (7 self)
 Add to MetaCart
Abstract. For certain security applications, including identity based encryption and short signature schemes, it is useful to have abelian varieties with security parameters that are neither too small nor too large. Supersingular abelian varieties are natural candidates for these applications. This paper determines exactly which values can occur as the security parameters of supersingular abelian varieties (in terms of the dimension of the abelian variety and the size of the finite field), and gives constructions of supersingular abelian varieties that are optimal for use in cryptography. 1
Analysis of the Weil Descent Attack of Gaudry, Hess and Smart
, 2000
"... . We analyze the Weil descent attack of Gaudry, Hess and Smart [12] on the elliptic curve discrete logarithm problem for elliptic curves dened over F2 n , where n is prime. 1 Introduction Let E be an elliptic curve dened over a nite eld F q . The elliptic curve discrete logarithm problem (ECDLP) ..."
Abstract

Cited by 30 (5 self)
 Add to MetaCart
. We analyze the Weil descent attack of Gaudry, Hess and Smart [12] on the elliptic curve discrete logarithm problem for elliptic curves dened over F2 n , where n is prime. 1 Introduction Let E be an elliptic curve dened over a nite eld F q . The elliptic curve discrete logarithm problem (ECDLP) in E(F q ) is the following: given E, P 2 E(F q ), r = ord(P ) and Q 2 hP i, nd the integer s 2 [0; r 1] such that Q = sP . The ECDLP is of interest because its apparent intractability forms the basis for the security of elliptic curve cryptographic schemes. The elliptic curve parameters have to be carefully chosen in order to circumvent some known attacks on the ECDLP. In order to avoid the PohligHellman [19] and Pollard's rho [20, 17] attacks, r should be a large prime number, say r > 2 160 . To avoid the Weil pairing [15] and Tate pairing [8] attacks, r should not divide q k 1 for each 1 k C, where C is large enough so that it is computationally infeasible to nd discrete ...
Solving Elliptic Curve Discrete Logarithm Problems Using Weil Descent
 JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY
, 2001
"... We provide the first cryptographically interesting instance of the elliptic curve discrete logarithm problem which resists all previously known attacks, but which can be solved with modest computer resources using the Weil descent attack methodology of Frey. We report on our implementation of index ..."
Abstract

Cited by 18 (3 self)
 Add to MetaCart
We provide the first cryptographically interesting instance of the elliptic curve discrete logarithm problem which resists all previously known attacks, but which can be solved with modest computer resources using the Weil descent attack methodology of Frey. We report on our implementation of indexcalculus methods for hyperelliptic curves over characteristic two finite fields, and discuss the cryptographic implications of our results.
Using Primitive Subgroups to Do More with Fewer Bits
, 2004
"... This paper gives a survey of some ways to improve the ef ciency of discrete logbased cryptography by using the restriction of scalars and the geometry and arithmetic of algebraic tori and abelian varieties. ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
This paper gives a survey of some ways to improve the ef ciency of discrete logbased cryptography by using the restriction of scalars and the geometry and arithmetic of algebraic tori and abelian varieties.
Weak Fields for ECC
, 2003
"... We demonstrate that some finite fields, including F 2 210 , are weak for elliptic curve cryptography in the sense that any instance of the elliptic curve discrete logarithm problem for any elliptic curve over these fields can be solved in significantly less time than it takes Pollard's rho method to ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
We demonstrate that some finite fields, including F 2 210 , are weak for elliptic curve cryptography in the sense that any instance of the elliptic curve discrete logarithm problem for any elliptic curve over these fields can be solved in significantly less time than it takes Pollard's rho method to solve the hardest instances. We discuss the implications of our observations to elliptic curve cryptography, and list some open problems.
Redundant trinomials for finite fields of characteristic 2
 Proceedings of ACISP 05, LNCS 3574
, 2005
"... Abstract. In this paper we introduce socalled redundant trinomials to represent elements of nite elds of characteristic 2. The concept is in fact similar to almost irreducible trinomials introduced by Brent and Zimmermann in the context of random numbers generators in [BZ 2003]. See also [BZ]. In f ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
Abstract. In this paper we introduce socalled redundant trinomials to represent elements of nite elds of characteristic 2. The concept is in fact similar to almost irreducible trinomials introduced by Brent and Zimmermann in the context of random numbers generators in [BZ 2003]. See also [BZ]. In fact, Blake et al. [BGL 1994, BGL 1996] and Tromp et al. [TZZ 1997] explored also similar ideas some years ago. However redundant trinomials have been discovered independently and this paper develops applications to cryptography, especially based on elliptic curves. After recalling well known techniques to perform e cient arithmetic in extensions of F2, we describe redundant trinomial bases and discuss how to implement them e ciently. They are well suited to build F2n when no irreducible trinomial of degree n exists. Depending on n ∈ [2, 10, 000] tests with NTL show that improvements for squaring and exponentiation are respectively up to 45 % and 25%. More attention is given to relevant extension degrees for doing elliptic and hyperelliptic curve cryptography. For this range, a scalar multiplication can be speeded up by a factor up to 15%. 1.
Families of genus 2 curves with small embedding degree.” Cryptology ePrint Archive, Report 2007/001
, 2007
"... Abstract. In cryptographic applications, hyperelliptic curves of small genus have the advantage of providing a group of comparable size to that of elliptic curves, while working over a field of smaller size. Pairingfriendly hyperelliptic curves are those for which the order of the Jacobian is divis ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
Abstract. In cryptographic applications, hyperelliptic curves of small genus have the advantage of providing a group of comparable size to that of elliptic curves, while working over a field of smaller size. Pairingfriendly hyperelliptic curves are those for which the order of the Jacobian is divisible by a large prime, whose embedding degree is small enough for pairing computations to be feasible, and whose minimal embedding field is large enough for the discrete logarithm problem in it to be difficult. We give a sequence of Fqisogeny classes for a family of Jacobians of genus 2 curves over Fq, for q = 2 m, and the corresponding small embedding degrees. We give examples of the parameters for such curves with embedding degree k < (log q) 2, such as k =