Results 1  10
of
18
External Memory Algorithms and Data Structures
, 1998
"... Data sets in large applications are often too massive to fit completely inside the computer's internal memory. The resulting input/output communication (or I/O) between fast internal memory and slower external memory (such as disks) can be a major performance bottleneck. In this paper, we survey the ..."
Abstract

Cited by 320 (24 self)
 Add to MetaCart
Data sets in large applications are often too massive to fit completely inside the computer's internal memory. The resulting input/output communication (or I/O) between fast internal memory and slower external memory (such as disks) can be a major performance bottleneck. In this paper, we survey the state of the art in the design and analysis of external memory algorithms and data structures (which are sometimes referred to as "EM" or "I/O" or "outofcore" algorithms and data structures). EM algorithms and data structures are often designed and analyzed using the parallel disk model (PDM). The three machineindependent measures of performance in PDM are the number of I/O operations, the CPU time, and the amount of disk space. PDM allows for multiple disks (or disk arrays) and parallel CPUs, and it can be generalized to handle tertiary storage and hierarchical memory. We discuss several important paradigms for how to solve batched and online problems efficiently in external memory. Programming tools and environments are available for simplifying the programming task. The TPIE system (Transparent Parallel I/O programming Environment) is both easy to use and efficient in terms of execution speed. We report on some experiments using TPIE in the domain of spatial databases. The newly developed EM algorithms and data structures that incorporate the paradigms we discuss are significantly faster than methods currently used in practice.
Efficient Algorithms for Sorting and Synchronization
, 2000
"... This thesis presents efficient algorithms for internal and external parallel sorting and remote data update. The sorting algorithms approach the problem by concentrating first on highly efficient but incorrect algorithms followed by a cleanup phase that completes the sort. The remote data update alg ..."
Abstract

Cited by 108 (0 self)
 Add to MetaCart
This thesis presents efficient algorithms for internal and external parallel sorting and remote data update. The sorting algorithms approach the problem by concentrating first on highly efficient but incorrect algorithms followed by a cleanup phase that completes the sort. The remote data update algorithm, rsync, operates by exchanging block signature information followed by a simple hash search algorithm for block matching at arbitrary byte boundaries. The last chapter of the thesis examines a number of related algorithms for text compression, differencing and incremental backup.
Simple Randomized Mergesort on Parallel Disks
 PARALLEL COMPUTING
, 1996
"... We consider the problem of sorting a file of N records on the Ddisk model of parallel I/O [VS94] in which there are two sources of parallelism. Records are transferred to and from disk concurrently in blocks of B contiguous records. In each I/O operation, up to one block can be transferred to or fr ..."
Abstract

Cited by 63 (11 self)
 Add to MetaCart
We consider the problem of sorting a file of N records on the Ddisk model of parallel I/O [VS94] in which there are two sources of parallelism. Records are transferred to and from disk concurrently in blocks of B contiguous records. In each I/O operation, up to one block can be transferred to or from each of the D disks in parallel. We propose a simple, efficient, randomized mergesort algorithm called SRM that uses a forecastandflush approach to overcome the inherent difficulties of simple merging on parallel disks. SRM exhibits a limited use of randomization and also has a useful deterministic version. Generalizing the technique of forecasting [Knu73], our algorithm is able to read in, at any time, the "right" block from any disk, and using the technique of flushing, our algorithm evicts, without any I/O overhead, just the "right" blocks from memory to make space for new ones to be read in. The disk layout of SRM is such that it enjoys perfect write parallelism, avoiding fundamenta...
Efficient ExternalMemory Data Structures and Applications
, 1996
"... In this thesis we study the Input/Output (I/O) complexity of largescale problems arising e.g. in the areas of database systems, geographic information systems, VLSI design systems and computer graphics, and design I/Oefficient algorithms for them. A general theme in our work is to design I/Oeffic ..."
Abstract

Cited by 38 (12 self)
 Add to MetaCart
In this thesis we study the Input/Output (I/O) complexity of largescale problems arising e.g. in the areas of database systems, geographic information systems, VLSI design systems and computer graphics, and design I/Oefficient algorithms for them. A general theme in our work is to design I/Oefficient algorithms through the design of I/Oefficient data structures. One of our philosophies is to try to isolate all the I/O specific parts of an algorithm in the data structures, that is, to try to design I/O algorithms from internal memory algorithms by exchanging the data structures used in internal memory with their external memory counterparts. The results in the thesis include a technique for transforming an internal memory tree data structure into an external data structure which can be used in a batched dynamic setting, that is, a setting where we for example do not require that the result of a search operation is returned immediately. Using this technique we develop batched dynamic external versions of the (onedimensional) rangetree and the segmenttree and we develop an external priority queue. Following our general philosophy we show how these structures can be used in standard internal memory sorting algorithms
I/OEfficient Scientific Computation Using TPIE
 In Proceedings of the Goddard Conference on Mass Storage Systems and Technologies, NASA Conference Publication 3340, Volume II
, 1995
"... In recent years, I/Oefficient algorithms for a wide variety of problems have appeared in the literature. Thus far, however, systems specifically designed to assist programmers in implementing such algorithms have remained scarce. TPIE is a system designed to fill this void. It supports I/Oeff ..."
Abstract

Cited by 34 (10 self)
 Add to MetaCart
In recent years, I/Oefficient algorithms for a wide variety of problems have appeared in the literature. Thus far, however, systems specifically designed to assist programmers in implementing such algorithms have remained scarce. TPIE is a system designed to fill this void. It supports I/Oefficient paradigms for problems from a variety of domains, including computational geometry, graph algorithms, and scientific computation. The TPIE interface frees programmers from having to deal not only of explicit read and write calls, but also the complex memory management that must be performed for I/Oefficient computation.
ExternalMemory Algorithms with Applications in Geographic Information Systems
 Algorithmic Foundations of GIS
, 1997
"... In the design of algorithms for largescale applications it is essential to consider the problem of minimizing Input/Output (I/O) communication. Geographical information systems (GIS) are good examples of such largescale applications as they frequently handle huge amounts of spatial data. In this n ..."
Abstract

Cited by 27 (9 self)
 Add to MetaCart
In the design of algorithms for largescale applications it is essential to consider the problem of minimizing Input/Output (I/O) communication. Geographical information systems (GIS) are good examples of such largescale applications as they frequently handle huge amounts of spatial data. In this note we survey the recent developments in externalmemory algorithms with applications in GIS. First we discuss the AggarwalVitter I/Omodel and illustrate why normal internalmemory algorithms for even very simple problems can perform terribly in an I/Oenvironment. Then we describe the fundamental paradigms for designing I/Oefficient algorithms by using them to design efficient sorting algorithms. We then go on and survey externalmemory algorithms for computational geometry problems  with special emphasis on problems with applications in GIS  and techniques for designing such algorithms: Using the orthogonal line segment intersection problem we illustrate the distributionsweeping and ...
Reducing i/o complexity by simulating coarse grained parallel algorithms
 In Proc. IPPS/SPDP
, 1999
"... Blockwise access to data is a central theme in the design of efficient external memory (EM) algorithms. A second important issue, when more than one disk is present, is fully parallel disk I/O. In this paper we present a deterministic simulation technique which transforms parallel algorithms into ( ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
Blockwise access to data is a central theme in the design of efficient external memory (EM) algorithms. A second important issue, when more than one disk is present, is fully parallel disk I/O. In this paper we present a deterministic simulation technique which transforms parallel algorithms into (parallel) external memory algorithms. Specifically, we present a deterministic simulation technique which transforms Coarse Grained Multicomputer (CGM) algorithms into external memory algorithms for the Parallel Disk Model. Our technique optimizes blockwise data access and parallel disk I/O and, at the same time, utilizes multiple processors connected via a communication network or shared memory. We obtain new improved parallel external memory algorithms for a large number of problems including sorting, permutation, matrix transpose, several geometric and GIS problems including 3D convex hulls (2D Voronoi diagrams), and various graph problems. All of the (parallel) external memory algorithms obtained via simulation are analyzed with respect to the computation time, communication time and the number of I/O’s. Our results answer to the challenge posed by the ACM working group on storage I/O for largescale computing [8]. 1
Bulk Synchronous Parallel Algorithms for the External Memory Model
, 2002
"... Blockwise access to data is a central theme in the design of efficient external memory (EM) algorithms. A second important issue, when more than one disk is present, is fully parallel disk I/O. In this paper we present a simple, deterministic simulation technique which transforms certain Bulk Synchr ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
Blockwise access to data is a central theme in the design of efficient external memory (EM) algorithms. A second important issue, when more than one disk is present, is fully parallel disk I/O. In this paper we present a simple, deterministic simulation technique which transforms certain Bulk Synchronous Parallel (BSP) algorithms into efficient parallel EM algorithms. It optimizes blockwise data access and parallel disk I/O and, at the same time, utilizes multiple processors connected via a communication network or shared memory. We obtain new improved parallel EM algorithms for a large number of problems including sorting, permutation, matrix transpose, several geometric and GIS problems including threedimensional convex hulls (twodimensional Voronoi diagrams), and various graph problems. We show that certain parallel algorithms known for the BSP model can be used to obtain EM algorithms that meet well known I/O complexity lower bounds for various problems, including sorting.
A Simple and Efficient Parallel Disk Mergesort
, 2002
"... External sorting—the process of sorting a file that is too large to fit into the computer’s internal memory and must be stored externally on disks—is a fundamental subroutine in database systems [G], [IBM]. Of prime importance are techniques that use multiple disks in parallel in order to speed up t ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
External sorting—the process of sorting a file that is too large to fit into the computer’s internal memory and must be stored externally on disks—is a fundamental subroutine in database systems [G], [IBM]. Of prime importance are techniques that use multiple disks in parallel in order to speed up the performance of external sorting. The simple randomized merging (SRM) mergesort algorithm proposed by Barve et al. [BGV] is the first parallel disk sorting algorithm that requires a provably optimal number of passes and that is fast in practice. Knuth [K, Section 5.4.9] recently identified SRM (which he calls “randomized striping”) as the method of choice for sorting with parallel disks. In this paper we present an efficient implementation of SRM, based upon novel and elegant data structures. We give a new implementation for SRM’s lookahead forecasting technique for parallel prefetching and its forecast and flush technique for buffer management. Our techniques amount to a significant improvement in the way SRM carries out the parallel, independent disk accesses necessary to read blocks of input runs efficiently during external merging. Our implementation is
An API for Choreographing Data Accesses
 DARTMOUTH COLLEGE DEPARTMENT OF COMPUTER SCIENCE
, 1995
"... Current APIs for multiprocessor multidisk file systems are not easy to use in developing outofcore algorithms that choreograph parallel data accesses. Consequently, the efficiency of these algorithms is hard to achieve in practice. We address this deficiency by specifying an API that includes ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
Current APIs for multiprocessor multidisk file systems are not easy to use in developing outofcore algorithms that choreograph parallel data accesses. Consequently, the efficiency of these algorithms is hard to achieve in practice. We address this deficiency by specifying an API that includes dataaccess primitives for data choreography. With our API, the programmer can easily access specific blocks from each disk in a single operation, thereby fully utilizing the parallelism of the underlying storage system. Our API supports the development of libraries of commonlyused higherlevel routines such as matrixmatrix addition, matrixmatrix multiplication, and BMMC (bitmatrixmultiply/complement) permutations. We illustrate our API in implementations of these three highlevel routines to demonstrate how easy it is to use.