Results 1  10
of
26
Presheaf Models for Concurrency
, 1999
"... In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their wo ..."
Abstract

Cited by 49 (19 self)
 Add to MetaCart
(Show Context)
In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their work inspired this thesis by suggesting that presheaf categories could provide abstract models for concurrency with a builtin notion of bisimulation. We show how
Enriched categories, internal categories and change of base
 Repr. Theory Appl. Categ
"... ..."
(Show Context)
Pseudo limits, biadjoints, and pseudo algebras: categorical foundations of conformal field theory
 Mem. Amer. Math. Soc
"... The purpose of this paper is to work out the categorical basis for the foundations of Conformal Field Theory. The definition of Conformal Field Theory was outlined in Segal [45] and recently given in [24] and [25]. Concepts of 2category theory, such as versions of algebra, limit, colimit, and adjun ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
(Show Context)
The purpose of this paper is to work out the categorical basis for the foundations of Conformal Field Theory. The definition of Conformal Field Theory was outlined in Segal [45] and recently given in [24] and [25]. Concepts of 2category theory, such as versions of algebra, limit, colimit, and adjunction, are necessary for this
Higher dimensional algebra VII: Groupoidification
, 2010
"... Groupoidification is a form of categorification in which vector spaces are replaced by groupoids and linear operators are replaced by spans of groupoids. We introduce this idea with a detailed exposition of ‘degroupoidification’: a systematic process that turns groupoids and spans into vector space ..."
Abstract

Cited by 23 (5 self)
 Add to MetaCart
Groupoidification is a form of categorification in which vector spaces are replaced by groupoids and linear operators are replaced by spans of groupoids. We introduce this idea with a detailed exposition of ‘degroupoidification’: a systematic process that turns groupoids and spans into vector spaces and linear operators. Then we present three applications of groupoidification. The first is to Feynman diagrams. The Hilbert space for the quantum harmonic oscillator arises naturally from degroupoidifying the groupoid of finite sets and bijections. This allows for a purely combinatorial interpretation of creation and annihilation operators, their commutation relations, field operators, their normalordered powers, and finally Feynman diagrams. The second application is to Hecke algebras. We explain how to groupoidify the Hecke algebra associated to a Dynkin diagram whenever the deformation parameter q is a prime power. We illustrate this with the simplest nontrivial example, coming from the A2 Dynkin diagram. In this example we show that the solution of the Yang–Baxter equation built into the A2 Hecke algebra arises naturally from the axioms of projective geometry applied to the projective plane over the finite field Fq. The third application is to Hall algebras. We explain how the standard construction of the Hall algebra from the category of Fq representations of a simplylaced quiver can be seen as an example of degroupoidification. This in turn provides a new way to categorify—or more precisely, groupoidify—the positive part of the quantum group associated to the quiver.
Homotopytheoretic aspects of 2–monads
 J. Homotopy Relat. Struct
"... We study 2monads and their algebras using a Catenriched version of Quillen model categories, emphasizing the parallels between the homotopical and 2categorical points of view. Every 2category with finite limits and colimits has a canonical model structure in which the weak equivalences are the e ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
(Show Context)
We study 2monads and their algebras using a Catenriched version of Quillen model categories, emphasizing the parallels between the homotopical and 2categorical points of view. Every 2category with finite limits and colimits has a canonical model structure in which the weak equivalences are the equivalences; we use these to construct more interesting model structures on 2categories, including a model structure on the 2category of algebras for a 2monad T, and a model structure on a 2category of 2monads on a fixed 2category K. 1
On PropertyLike Structures
, 1997
"... A category may bear many monoidal structures, but (to within a unique isomorphism) only one structure of "category with finite products". To capture such distinctions, we consider on a 2category those 2monads for which algebra structure is essentially unique if it exists, giving a precis ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
A category may bear many monoidal structures, but (to within a unique isomorphism) only one structure of "category with finite products". To capture such distinctions, we consider on a 2category those 2monads for which algebra structure is essentially unique if it exists, giving a precise mathematical definition of "essentially unique" and investigating its consequences. We call such 2monads propertylike. We further consider the more restricted class of fully propertylike 2monads, consisting of those propertylike 2monads for which all 2cells between (even lax) algebra morphisms are algebra 2cells. The consideration of lax morphisms leads us to a new characterization of those monads, studied by Kock and Zoberlein, for which "structure is adjoint to unit", and which we now call laxidempotent 2monads: both these and their colaxidempotent duals are fully propertylike. We end by showing that (at least for finitary 2monads) the classes of propertylikes, fully propertylike...
Groupoidification Made Easy
, 2008
"... Groupoidification is a form of categorification in which vector spaces are replaced by groupoids, and linear operators are replaced by spans of groupoids. We introduce this idea with a detailed exposition of ‘degroupoidification’: a systematic process that turns groupoids and spans into vector space ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
(Show Context)
Groupoidification is a form of categorification in which vector spaces are replaced by groupoids, and linear operators are replaced by spans of groupoids. We introduce this idea with a detailed exposition of ‘degroupoidification’: a systematic process that turns groupoids and spans into vector spaces and linear operators. Then we present two applications of groupoidification. The first is to Feynman diagrams. The Hilbert space for the quantum harmonic oscillator arises naturally from degroupoidifying the groupoid of finite sets and bijections. This allows for a purely combinatorial interpretation of creation and annihilation operators, their commutation relations, field operators, their normalordered powers, and finally Feynman diagrams. The second application is to Hecke algebras. We explain how to groupoidify the Hecke algebra associated to a Dynkin diagram whenever the deformation parameter q is a prime power. We illustrate this with the simplest nontrivial example, coming from the A2 Dynkin diagram. In this example we show that the solution of the Yang– Baxter equation built into the A2 Hecke algebra arises naturally from the axioms of projective geometry applied to the projective plane over the finite field Fq.
Homotopy coherent adjunctions and the formal theory of monads. 2013. arXiv:1310.8279 [math.CT
"... Abstract. In this paper, we introduce a cofibrant simplicial category that we call the free homotopy coherent adjunction and characterize its narrows using a graphical calculus that we develop here. The homspaces are appropriately fibrant, indeed are nerves of categories, which indicates that all ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper, we introduce a cofibrant simplicial category that we call the free homotopy coherent adjunction and characterize its narrows using a graphical calculus that we develop here. The homspaces are appropriately fibrant, indeed are nerves of categories, which indicates that all of the expected coherence equations in each dimension are present. To justify our terminology, we prove that any adjunction of quasicategories extends to a homotopy coherent adjunction and furthermore that these extensions are homotopically unique in the sense that the relevant spaces of extensions are contractible Kan complexes. We extract several simplicial functors from the free homotopy coherent adjunction and show that quasicategories are closed under weighted limits with these weights. These weighted limits are used to define the homotopy coherent monadic adjunction associated to a homotopy coherent monad. We show that each vertex in the quasicategory of algebras for a homotopy coherent adjunction is a codescent object of a canonical diagram of free algebras. To conclude, we prove the quasicategorical monadicity theorem, describing conditions under which the canonical comparison functor from a homotopy coherent ad
Weak subobjects and the epimonic completion of a category
 J. Pure Appl. Algebra
"... Abstract. The notion of weak subobject, or variation, was introduced in [Gr4] as an extension of the notion of subobject, adapted to homotopy categories or triangulated categories, and well linked with their weak limits. We study here some formal properties of this notion. The variations in X can b ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
(Show Context)
Abstract. The notion of weak subobject, or variation, was introduced in [Gr4] as an extension of the notion of subobject, adapted to homotopy categories or triangulated categories, and well linked with their weak limits. We study here some formal properties of this notion. The variations in X can be identified with the (distinguished) subobjects in the Freyd completion FrX, the free category with epimonic factorisation system over X, which extends the Freyd embedding of the stable homotopy