Results 1  10
of
82
Fast approximate energy minimization via graph cuts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when v ..."
Abstract

Cited by 1384 (52 self)
 Add to MetaCart
In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when very large moves are allowed. The first move we consider is an αβswap: for a pair of labels α, β, this move exchanges the labels between an arbitrary set of pixels labeled α and another arbitrary set labeled β. Our first algorithm generates a labeling such that there is no swap move that decreases the energy. The second move we consider is an αexpansion: for a label α, this move assigns an arbitrary set of pixels the label α. Our second
An Experimental Comparison of MinCut/MaxFlow Algorithms for Energy Minimization in Vision
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2001
"... After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in lowlevel vision. The combinatorial optimization literature provides many mincut/maxflow algorithms with different polynomial time compl ..."
Abstract

Cited by 794 (48 self)
 Add to MetaCart
After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in lowlevel vision. The combinatorial optimization literature provides many mincut/maxflow algorithms with different polynomial time complexity. Their practical efficiency, however, has to date been studied mainly outside the scope of computer vision. The goal of this paper
What energy functions can be minimized via graph cuts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2004
"... Abstract—In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph construction ..."
Abstract

Cited by 699 (21 self)
 Add to MetaCart
Abstract—In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper, we give a characterization of the energy functions that can be minimized by graph cuts. Our results are restricted to functions of binary variables. However, our work generalizes many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables. We also provide a generalpurpose construction to minimize such an energy function. Finally, we give a necessary condition for any energy function of binary variables to be minimized by graph cuts. Researchers who are considering the use of graph cuts to optimize a particular energy function can use our results to determine if this is possible and then follow our construction to create the appropriate graph. A software implementation is freely available.
Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in ND Images
, 2001
"... In this paper we describe a new technique for general purpose interactive segmentation of Ndimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph ..."
Abstract

Cited by 657 (14 self)
 Add to MetaCart
In this paper we describe a new technique for general purpose interactive segmentation of Ndimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph cuts are used to find the globally optimal segmentation of the Ndimensional image. The obtained solution gives the best balance of boundary and region properties among all segmentations satisfying the constraints. The topology of our segmentation is unrestricted and both “object” and “background” segments may consist of several isolatedparts. Some experimental results are presented in the context ofphotohideo editing and medical image segmentation. We also demonstrate an interesting Gestalt example. A fast implementation of our segmentation method is possible via a new mar$ow algorithm in [2].
Pictorial Structures for Object Recognition
 IJCV
, 2003
"... In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance ..."
Abstract

Cited by 524 (15 self)
 Add to MetaCart
In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance of each part is modeled separately, and the deformable configuration is represented by springlike connections between pairs of parts. These models allow for qualitative descriptions of visual appearance, and are suitable for generic recognition problems. We use these models to address the problem of detecting an object in an image as well as the problem of learning an object model from training examples, and present efficient algorithms for both these problems. We demonstrate the techniques by learning models that represent faces and human bodies and using the resulting models to locate the corresponding objects in novel images.
Computing Visual Correspondence with Occlusions using Graph Cuts
"... Several new algorithms for visual correspondence based on graph cuts [7, 14, 17] have recently been developed. While these methods give very strong results in practice, they do not handle occlusions properly. Specifically, they treat the two input images asymmetrically, and they do not ensure that a ..."
Abstract

Cited by 266 (11 self)
 Add to MetaCart
Several new algorithms for visual correspondence based on graph cuts [7, 14, 17] have recently been developed. While these methods give very strong results in practice, they do not handle occlusions properly. Specifically, they treat the two input images asymmetrically, and they do not ensure that a pixel corresponds to at most one pixel in the other image. In this paper, we present a new method which properly addresses occlusions, while preserving the advantages of graph cut algorithms. We give experimental results for stereo as well as motion, which demonstrate that our method performs well both at detecting occlusions and computing disparities.
Multiclass spectral clustering
 In Proc. Int. Conf. Computer Vision
, 2003
"... We propose a principled account on multiclass spectral clustering. Given a discrete clustering formulation, we first solve a relaxed continuous optimization problem by eigendecomposition. We clarify the role of eigenvectors as a generator of all optimal solutions through orthonormal transforms. We t ..."
Abstract

Cited by 181 (7 self)
 Add to MetaCart
We propose a principled account on multiclass spectral clustering. Given a discrete clustering formulation, we first solve a relaxed continuous optimization problem by eigendecomposition. We clarify the role of eigenvectors as a generator of all optimal solutions through orthonormal transforms. We then solve an optimal discretization problem, which seeks a discrete solution closest to the continuous optima. The discretization is efficiently computed in an iterative fashion using singular value decomposition and nonmaximum suppression. The resulting discrete solutions are nearly globaloptimal. Our method is robust to random initialization and converges faster than other clustering methods. Experiments on real image segmentation are reported. optima consist not only of the eigenvectors, but of a whole family spanned by the eigenvectors through orthonormal transforms. The goal is to find the right orthonormal transform that leads to a discretization. ˜X normalize
Markov random fields with efficient approximations
 In IEEE Conference on Computer Vision and Pattern Recognition
, 1998
"... Markov Random Fields (MRF’s) can be used for a wide variety of vision problems. In this paper we focus on MRF’s with twovalued clique potentials, which form a generalized Potts model. We show that the maximum a posteriori estimate of such an MRF can be obtained by solving a multiway minimum cut pro ..."
Abstract

Cited by 166 (22 self)
 Add to MetaCart
Markov Random Fields (MRF’s) can be used for a wide variety of vision problems. In this paper we focus on MRF’s with twovalued clique potentials, which form a generalized Potts model. We show that the maximum a posteriori estimate of such an MRF can be obtained by solving a multiway minimum cut problem on a graph. We develop efficient algorithms for computing good approximations to the minimum multiway cut. The visual correspondence problem can be formulated as an MRF in our framework; this yields quite promising results on real data with ground truth. We also apply our techniques to MRF’s with linear clique potentials. 1
Approximation Algorithms for Classification Problems with Pairwise Relationships: Metric Labeling and Markov Random Fields
 IN IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE
, 1999
"... In a traditional classification problem, we wish to assign one of k labels (or classes) to each of n objects, in a way that is consistent with some observed data that we have about the problem. An active line of research in this area is concerned with classification when one has information about pa ..."
Abstract

Cited by 161 (2 self)
 Add to MetaCart
In a traditional classification problem, we wish to assign one of k labels (or classes) to each of n objects, in a way that is consistent with some observed data that we have about the problem. An active line of research in this area is concerned with classification when one has information about pairwise relationships among the objects to be classified; this issue is one of the principal motivations for the framework of Markov random fields, and it arises in areas such as image processing, biometry, and document analysis. In its most basic form, this style of analysis seeks a classification that optimizes a combinatorial function consisting of assignment costs  based on the individual choice of label we make for each object  and separation costs  based on the pair of choices we make for two "related" objects. We formulate a general classification problem of this type, the metric labeling problem; we show that it contains as special cases a number of standard classification f...
Efficient Matching of Pictorial Structures
 Proc. IEEE Computer Vision and Pattern Recognition Conf.
, 2000
"... A pictorial structure is a collection of parts arranged in a deformable configuration. Each part is represented using a simple appearance model and the deformable configuration is represented by springlike connections between pairs of parts. While pictorial structures were introduced a number of ye ..."
Abstract

Cited by 161 (9 self)
 Add to MetaCart
A pictorial structure is a collection of parts arranged in a deformable configuration. Each part is represented using a simple appearance model and the deformable configuration is represented by springlike connections between pairs of parts. While pictorial structures were introduced a number of years ago, they have not been broadly applied to matching and recognition problems. This has been due in part to the computational difficulty of matching pictorial structures to images. In this paper we present an efficient algorithm for finding the best global match of a pictorial structure to an image. The running time of the algorithm is optimal and it it takes only a few seconds to match a model with ve to ten parts. With this improved algorithm, pictorial structures provide a practical and powerful framework for qualitative descriptions of objects and scenes, and are suitable for many generic image recognition problems. We illustrate the approach using simple models of a person and a car.