Results 1  10
of
69
Improved Combinatorial Algorithms for the Facility Location and kMedian Problems
 In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science
, 1999
"... We present improved combinatorial approximation algorithms for the uncapacitated facility location and kmedian problems. Two central ideas in most of our results are cost scaling and greedy improvement. We present a simple greedy local search algorithm which achieves an approximation ratio of 2:414 ..."
Abstract

Cited by 209 (14 self)
 Add to MetaCart
We present improved combinatorial approximation algorithms for the uncapacitated facility location and kmedian problems. Two central ideas in most of our results are cost scaling and greedy improvement. We present a simple greedy local search algorithm which achieves an approximation ratio of 2:414 + in ~ O(n 2 =) time. This also yields a bicriteria approximation tradeoff of (1 +; 1+ 2=) for facility cost versus service cost which is better than previously known tradeoffs and close to the best possible. Combining greedy improvement and cost scaling with a recent primal dual algorithm for facility location due to Jain and Vazirani, we get an approximation ratio of 1.853 in ~ O(n 3 ) time. This is already very close to the approximation guarantee of the best known algorithm which is LPbased. Further, combined with the best known LPbased algorithm for facility location, we get a very slight improvement in the approximation factor for facility location, achieving 1.728....
Simpler and better approximation algorithms for network design
 In Proceedings of the 35th Annual ACM Symposium on Theory of Computing
, 2003
"... We give simple and easytoanalyze randomized approximation algorithms for several wellstudied NPhard network design problems. Our algorithms improve over the previously best known approximation ratios. Our main results are the following. We give a randomized 3.55approximation algorithm for the c ..."
Abstract

Cited by 81 (14 self)
 Add to MetaCart
We give simple and easytoanalyze randomized approximation algorithms for several wellstudied NPhard network design problems. Our algorithms improve over the previously best known approximation ratios. Our main results are the following. We give a randomized 3.55approximation algorithm for the connected facility location problem. The algorithm requires three lines to state, one page to analyze, and improves the bestknown performance guarantee for the problem. We give a 5.55approximation algorithm for virtual private network design. Previously, constantfactor approximation algorithms were known only for special cases of this problem. We give a simple constantfactor approximation algorithm for the singlesink buyatbulk network design problem. Our performance guarantee improves over what was previously known, and is an order of magnitude improvement over previous combinatorial approximation algorithms for the problem.
Approximation algorithms for the 0extension problem
 IN PROCEEDINGS OF THE TWELFTH ANNUAL ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 2001
"... In the 0extension problem, we are given a weighted graph with some nodes marked as terminals and a semimetric on the set of terminals. Our goal is to assign the rest of the nodes to terminals so as to minimize the sum, over all edges, of the product of the edge’s weight and the distance between t ..."
Abstract

Cited by 66 (3 self)
 Add to MetaCart
In the 0extension problem, we are given a weighted graph with some nodes marked as terminals and a semimetric on the set of terminals. Our goal is to assign the rest of the nodes to terminals so as to minimize the sum, over all edges, of the product of the edge’s weight and the distance between the terminals to which its endpoints are assigned. This problem generalizes the multiway cut problem of Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis and is closely related to the metric labeling problem introduced by Kleinberg and Tardos. We present approximation algorithms for 0Extension. In arbitrary graphs, we present a O(log k)approximation algorithm, k being the number of terminals. We also give O(1)approximation guarantees for weighted planar graphs. Our results are based on a natural metric relaxation of the problem, previously considered by Karzanov. It is similar in flavor to the linear programming relaxation of Garg, Vazirani, and Yannakakis for the multicut problem and similar to relaxations for other graph partitioning problems. We prove that the integrality ratio of the metric relaxation is at least c √ lg k for a positive c for infinitely many k. Our results improve some of the results of Kleinberg and Tardos and they further our understanding on how to use metric relaxations.
Approximation Algorithms for the Metric Labeling Problem via a New Linear Programming Formulation
, 2000
"... We consider approximation algorithms for the metric labeling problem. Informally speaking, we are given a weighted graph that specifies relations between pairs of objects drawn from a given set of objects. The goal is to find a minimum cost labeling of these objects where the cost of a labeling is d ..."
Abstract

Cited by 66 (1 self)
 Add to MetaCart
We consider approximation algorithms for the metric labeling problem. Informally speaking, we are given a weighted graph that specifies relations between pairs of objects drawn from a given set of objects. The goal is to find a minimum cost labeling of these objects where the cost of a labeling is determined by the pairwise relations between the objects and a distance function on labels; the distance function is assumed to be a metric. Each object also incurs an assignment cost that is label, and vertex dependent. The problem was introduced in a recent paper by Kleinberg and Tardos [19], and captures many classification problems that arise in computer vision and related fields. They gave an O(log k log log k) approximation for the general case where k is the number of labels and a 2approximation for the uniform metric case. More recently, Gupta and Tardos [14] gave a 4approximation for the truncated linear metric, a natural nonuniform metric motivated by practical applications to image restoration and visual correspondence. In this paper we introduce a new natural integer programming formulation and show that the integrality gap of its linear relaxation either matches or improves the ratios known for several cases of the metric labeling problem studied until now, providing a unified approach to solving them. Specifically, we show that the integrality gap of our LP is bounded by O(log k log log k) for general metric and 2 for the uniform metric thus matching the ratios in [19]. We also develop an algorithm based on our LP that achieves a ratio of 2 + p 2 ' 3:414 for the truncated linear metric improving the ratio provided by [14]. Our algorithm uses the fact that the integrality gap of our LP is 1 on a linear metric. We believe that our formulation h...
Hardness of BuyatBulk Network Design
, 2004
"... We consider the BuyatBulk network design problem in which we wish to design a network for carrying multicommodity demands from a set of source nodes to a set of destination nodes. The key feature of the problem is that the cost of capacity on each edge is concave and hence exhibits economies of sc ..."
Abstract

Cited by 64 (4 self)
 Add to MetaCart
We consider the BuyatBulk network design problem in which we wish to design a network for carrying multicommodity demands from a set of source nodes to a set of destination nodes. The key feature of the problem is that the cost of capacity on each edge is concave and hence exhibits economies of scale. If the cost of capacity per unit length can be different on different edges then we say that the problem is nonuniform. The problem is uniform otherwise.
Primaldual algorithms for connected facility location problems
 Algorithmica
, 2002
"... We consider the Connected Facility Location problem. We are given a graph G = (V, E) with costs {ce} on the edges, a set of facilities F ⊆ V, and a set of clients D ⊆ V. Facility i has a facility opening cost fi and client j has dj units of demand. We are also given a parameter M ≥ 1. A solution ope ..."
Abstract

Cited by 58 (7 self)
 Add to MetaCart
We consider the Connected Facility Location problem. We are given a graph G = (V, E) with costs {ce} on the edges, a set of facilities F ⊆ V, and a set of clients D ⊆ V. Facility i has a facility opening cost fi and client j has dj units of demand. We are also given a parameter M ≥ 1. A solution opens some facilities, say F, assigns each client j to an open facility i(j), and connects the open facilities by a Steiner tree T. The total cost incurred is � i∈F fi + � j∈D djci(j)j + M � e∈T ce. We want a solution of minimum cost. A special case of this problem is when all opening costs are 0 and facilities may be opened anywhere, i.e., F = V. If we know a facility v that is open, then the problem becomes a special case of the singlesink buyatbulk problem with two cable types, also known as the rentorbuy problem. We give the first primaldual algorithms for these problems and achieve the best known approximation guarantees. We give a 8.55approximation algorithm for the connected facility location problem and a 4.55approximation algorithm for the rentorbuy problem. Previously the best approximation factors for these problems were 10.66 and 9.001 respectively [8]. Further, these results were not combinatorial — they were obtained by solving an exponential size linear programming relaxation. Our algorithm integrates the primaldual approaches for the facility location problem [11] and the Steiner tree problem [1, 3]. We also consider the connected kmedian problem and give a constantfactor approximation by using our primaldual algorithm for connected facility location. We generalize our results to an edge capacitated variant of these problems and give a constantfactor approximation for these variants.
Approximation algorithms for nonuniform buyatbulk network design problems
 Proc. of IEEE FOCS
"... Abstract. Buyatbulk network design problems arise in settings where the costs for purchasing or installing equipment exhibit economies of scale. The objective is to build a network of cheapest cost to support a given multicommodity flow demand between node pairs. We present approximation algorith ..."
Abstract

Cited by 58 (15 self)
 Add to MetaCart
Abstract. Buyatbulk network design problems arise in settings where the costs for purchasing or installing equipment exhibit economies of scale. The objective is to build a network of cheapest cost to support a given multicommodity flow demand between node pairs. We present approximation algorithms for buyatbulk network design problems with costs on both edges and nodes of an undirected graph. Our main result is the first polylogarithmic approximation ratio for the nonuniform problem that allows different cost functions on each edge and node; the ratio we achieve is O(log4 h) where h is the number of demand pairs. In addition we present an O(log h) approximation for the single sink problem. Polylogarithmic ratios for some related problems are also obtained. Our algorithm for the multicommodity problem is obtained via a reduction to the single source problem using the notion of junction trees. We believe that this presents a simple yet useful general technique for network design problems. Key words. Nonuniform buyatbulk, network design, approximation algorithm, concave cost, network flow, economies of scale AMS subject classifications. 68Q25, 68W25, 90C27, 90C59 1. Introduction. Network
Approximation via costsharing: a simple approximation algorithm for the multicommodity rentorbuy problem
 In IEEE Symposium on Foundations of Computer Science (FOCS
, 2003
"... We study the multicommodity rentorbuy problem, a type of network design problem with economies of scale. In this problem, capacity on an edge can be rented, with cost incurred on a perunit of capacity basis, or bought, which allows unlimited use after payment of a large fixed cost. Given a graph ..."
Abstract

Cited by 46 (6 self)
 Add to MetaCart
We study the multicommodity rentorbuy problem, a type of network design problem with economies of scale. In this problem, capacity on an edge can be rented, with cost incurred on a perunit of capacity basis, or bought, which allows unlimited use after payment of a large fixed cost. Given a graph and a set of sourcesink pairs, we seek a minimumcost way of installing sufficient capacity on edges so that a prescribed amount of flow can be sent simultaneously from each source to the corresponding sink. The first constantfactor approximation algorithm for this problem was recently given by Kumar et al. (FOCS ’02); however, this algorithm and its analysis are both quite complicated, and its performance guarantee is extremely large. In this paper, we give a conceptually simple 12approximation algorithm for this problem. Our analysis of this algorithm makes crucial use of cost sharing, the task of allocating the cost of an object to many users of the object in a “fair ” manner. While techniques from approximation algorithms have recently yielded new progress on cost sharing problems, our work is the first to show the converse— that ideas from cost sharing can be fruitfully applied in the design and analysis of approximation algorithms. 1
The PrizeCollecting Generalized Steiner Tree Problem Via A New Approach Of PrimalDual Schema
"... In this paper we study the prizecollecting version of the Generalized Steiner Tree problem. To the best of our knowledge, there is no general combinatorial technique in approximation algorithms developed to study the prizecollecting versions of various problems. These problems are studied on a cas ..."
Abstract

Cited by 46 (13 self)
 Add to MetaCart
In this paper we study the prizecollecting version of the Generalized Steiner Tree problem. To the best of our knowledge, there is no general combinatorial technique in approximation algorithms developed to study the prizecollecting versions of various problems. These problems are studied on a case by case basis by Bienstock et al. [5] by applying an LProunding technique which is not a combinatorial approach. The main contribution of this paper is to introduce a general combinatorial approach towards solving these problems through novel primaldual schema (without any need to solve an LP). We fuse the primaldual schema with Farkas lemma to obtain a combinatorial 3approximation algorithm for the PrizeCollecting Generalized Steiner Tree problem. Our work also inspires a combinatorial algorithm [12] for solving a special case of Kelly’s problem [21] of pricing edges. We also consider the kforest problem, a generalization of kMST and kSteiner tree, and we show that in spite of these problems for which there are constant factor approximation algorithms, the kforest problem is much harder to approximate. In particular, obtaining an approximation factor better than O(n 1/6−ε) for kforest requires substantially new ideas including improving the approximation factor O(n 1/3−ε) for the notorious densest ksubgraph problem. We note that kforest and prizecollecting version of Generalized Steiner Tree are closely related to each other, since the latter is the Lagrangian relaxation of the former.