Results 1  10
of
208
A Tight Bound on Approximating Arbitrary Metrics by Tree Metrics
 In Proceedings of the 35th Annual ACM Symposium on Theory of Computing
, 2003
"... In this paper, we show that any n point metric space can be embedded into a distribution over dominating tree metrics such that the expected stretch of any edge is O(log n). This improves upon the result of Bartal who gave a bound of O(log n log log n). Moreover, our result is existentially tight; t ..."
Abstract

Cited by 269 (7 self)
 Add to MetaCart
In this paper, we show that any n point metric space can be embedded into a distribution over dominating tree metrics such that the expected stretch of any edge is O(log n). This improves upon the result of Bartal who gave a bound of O(log n log log n). Moreover, our result is existentially tight; there exist metric spaces where any tree embedding must have distortion#sto n)distortion. This problem lies at the heart of numerous approximation and online algorithms including ones for group Steiner tree, metric labeling, buyatbulk network design and metrical task system. Our result improves the performance guarantees for all of these problems.
Similarity estimation techniques from rounding algorithms
 In Proc. of 34th STOC
, 2002
"... A locality sensitive hashing scheme is a distribution on a family F of hash functions operating on a collection of objects, such that for two objects x, y, Prh∈F[h(x) = h(y)] = sim(x,y), where sim(x,y) ∈ [0, 1] is some similarity function defined on the collection of objects. Such a scheme leads ..."
Abstract

Cited by 230 (6 self)
 Add to MetaCart
A locality sensitive hashing scheme is a distribution on a family F of hash functions operating on a collection of objects, such that for two objects x, y, Prh∈F[h(x) = h(y)] = sim(x,y), where sim(x,y) ∈ [0, 1] is some similarity function defined on the collection of objects. Such a scheme leads to a compact representation of objects so that similarity of objects can be estimated from their compact sketches, and also leads to efficient algorithms for approximate nearest neighbor search and clustering. Minwise independent permutations provide an elegant construction of such a locality sensitive hashing scheme for a collection of subsets with the set similarity measure sim(A, B) = A∩B A∪B . We show that rounding algorithms for LPs and SDPs used in the context of approximation algorithms can be viewed as locality sensitive hashing schemes for several interesting collections of objects. Based on this insight, we construct new locality sensitive hashing schemes for: 1. A collection of vectors with the distance between ⃗u and ⃗v measured by θ(⃗u,⃗v)/π, where θ(⃗u,⃗v) is the angle between ⃗u and ⃗v. This yields a sketching scheme for estimating the cosine similarity measure between two vectors, as well as a simple alternative to minwise independent permutations for estimating set similarity. 2. A collection of distributions on n points in a metric space, with distance between distributions measured by the Earth Mover Distance (EMD), (a popular distance measure in graphics and vision). Our hash functions map distributions to points in the metric space such that, for distributions P and Q,
A constantfactor approximation algorithm for the kmedian problem
 In Proceedings of the 31st Annual ACM Symposium on Theory of Computing
, 1999
"... We present the first constantfactor approximation algorithm for the metric kmedian problem. The kmedian problem is one of the most wellstudied clustering problems, i.e., those problems in which the aim is to partition a given set of points into clusters so that the points within a cluster are re ..."
Abstract

Cited by 215 (14 self)
 Add to MetaCart
We present the first constantfactor approximation algorithm for the metric kmedian problem. The kmedian problem is one of the most wellstudied clustering problems, i.e., those problems in which the aim is to partition a given set of points into clusters so that the points within a cluster are relatively close with respect to some measure. For the metric kmedian problem, we are given n points in a metric space. We select k of these to be cluster centers, and then assign each point to its closest selected center. If point j is assigned to a center i, the cost incurred is proportional to the distance between i and j. The goal is to select the k centers that minimize the sum of the assignment costs. We give a 6 2 3approximation algorithm for this problem. This improves upon the best previously known result of O(log k log log k), which was obtained by refining and derandomizing a randomized O(log n log log n)approximation algorithm of Bartal. 1
Approximate distance oracles
 J. ACM
"... Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in ..."
Abstract

Cited by 210 (8 self)
 Add to MetaCart
Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in O(k) time. The approximate distance returned is of stretch at most 2k − 1, i.e., the quotient obtained by dividing the estimated distance by the actual distance lies between 1 and 2k−1. A 1963 girth conjecture of Erdős, implies that Ω(n 1+1/k) space is needed in the worst case for any real stretch strictly smaller than 2k + 1. The space requirement of our algorithm is, therefore, essentially optimal. The most impressive feature of our data structure is its constant query time, hence the name “oracle”. Previously, data structures that used only O(n 1+1/k) space had a query time of Ω(n 1/k). Our algorithms are extremely simple and easy to implement efficiently. They also provide faster constructions of sparse spanners of weighted graphs, and improved tree covers and distance labelings of weighted or unweighted graphs. 1
Improved Combinatorial Algorithms for the Facility Location and kMedian Problems
 In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science
, 1999
"... We present improved combinatorial approximation algorithms for the uncapacitated facility location and kmedian problems. Two central ideas in most of our results are cost scaling and greedy improvement. We present a simple greedy local search algorithm which achieves an approximation ratio of 2:414 ..."
Abstract

Cited by 209 (14 self)
 Add to MetaCart
We present improved combinatorial approximation algorithms for the uncapacitated facility location and kmedian problems. Two central ideas in most of our results are cost scaling and greedy improvement. We present a simple greedy local search algorithm which achieves an approximation ratio of 2:414 + in ~ O(n 2 =) time. This also yields a bicriteria approximation tradeoff of (1 +; 1+ 2=) for facility cost versus service cost which is better than previously known tradeoffs and close to the best possible. Combining greedy improvement and cost scaling with a recent primal dual algorithm for facility location due to Jain and Vazirani, we get an approximation ratio of 1.853 in ~ O(n 3 ) time. This is already very close to the approximation guarantee of the best known algorithm which is LPbased. Further, combined with the best known LPbased algorithm for facility location, we get a very slight improvement in the approximation factor for facility location, achieving 1.728....
Approximation Algorithms for Classification Problems with Pairwise Relationships: Metric Labeling and Markov Random Fields
 IN IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE
, 1999
"... In a traditional classification problem, we wish to assign one of k labels (or classes) to each of n objects, in a way that is consistent with some observed data that we have about the problem. An active line of research in this area is concerned with classification when one has information about pa ..."
Abstract

Cited by 161 (2 self)
 Add to MetaCart
In a traditional classification problem, we wish to assign one of k labels (or classes) to each of n objects, in a way that is consistent with some observed data that we have about the problem. An active line of research in this area is concerned with classification when one has information about pairwise relationships among the objects to be classified; this issue is one of the principal motivations for the framework of Markov random fields, and it arises in areas such as image processing, biometry, and document analysis. In its most basic form, this style of analysis seeks a classification that optimizes a combinatorial function consisting of assignment costs  based on the individual choice of label we make for each object  and separation costs  based on the pair of choices we make for two "related" objects. We formulate a general classification problem of this type, the metric labeling problem; we show that it contains as special cases a number of standard classification f...
A polylogarithmic approximation algorithm for the group Steiner tree problem
 Journal of Algorithms
, 2000
"... The group Steiner tree problem is a generalization of the Steiner tree problem where we ae given several subsets (groups) of vertices in a weighted graph, and the goal is to find a minimumweight connected subgraph containing at least one vertex from each group. The problem was introduced by Reich a ..."
Abstract

Cited by 134 (9 self)
 Add to MetaCart
The group Steiner tree problem is a generalization of the Steiner tree problem where we ae given several subsets (groups) of vertices in a weighted graph, and the goal is to find a minimumweight connected subgraph containing at least one vertex from each group. The problem was introduced by Reich and Widmayer and finds applications in VLSI design. The group Steiner tree problem generalizes the set covering problem, and is therefore at least as had. We give a randomized O(log 3 n log k)approximation algorithm for the group Steiner tree problem on an nnode graph, where k is the number of groups. The best previous ink)v/ (Bateman, Helvig, performance guarantee was (1 +  Robins and Zelikovsky).
Simultaneous Optimization for Concave Costs: Single Sink Aggregation or Single Source BuyatBulk
 In Proc. of the 14 th Symposium on Discrete Algorithms (SODA
, 2003
"... We consider the problem of finding efficient trees to send information from k sources to a single sink in a network where information can be aggregated at intermediate nodes in the tree. Specifically, we assume that if information from j sources is traveling over a link, the total information tha ..."
Abstract

Cited by 101 (3 self)
 Add to MetaCart
We consider the problem of finding efficient trees to send information from k sources to a single sink in a network where information can be aggregated at intermediate nodes in the tree. Specifically, we assume that if information from j sources is traveling over a link, the total information that needs to be transmitted is f(j). One natural and important (though not necessarily comprehensive) class of functions is those which are concave, nondecreasing, and satisfy f(0) = 0. Our goal is to find a tree which is a good approximation simultaneously to the optimum trees for all such functions. This problem is motivated by aggregation in sensor networks, as well as by buyatbulk network design.
A constantfactor approximation algorithm for the multicommodity rentorbuy problem
 In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science
, 2002
"... We present the first constantfactor approximation algorithm for network design with multiple commodities and economies of scale. We consider the rentorbuy problem, a type of multicommodity buyatbulk network design in which there are two ways to install capacity on any given edge. Capacity can b ..."
Abstract

Cited by 83 (9 self)
 Add to MetaCart
We present the first constantfactor approximation algorithm for network design with multiple commodities and economies of scale. We consider the rentorbuy problem, a type of multicommodity buyatbulk network design in which there are two ways to install capacity on any given edge. Capacity can be rented, with cost incurred on a perunit of capacity basis, or bought, which allows unlimited use after payment of a large fixed cost. Given a graph and a set of sourcesink pairs, we seek a minimumcost way of installing sufficient capacity on edges so that a prescribed amount of flow can be sent simultaneously from each source to the corresponding sink. Recent work on buyatbulk network design has concentrated on the special case where all sinks are identical; existing constantfactor approximation algorithms for this special case make crucial use of the assumption that all commodities ship flow to the same sink vertex and do not obviously extend to the multicommodity rentorbuy problem. Prior to our work, the best heuristics for the multicommodity rentorbuy problem achieved only logarithmic performance guarantees and relied on the machinery of relaxed metrical task systems or of metric embeddings. By contrast, we solve the network design problem directly via a novel primaldual algorithm. 1
Approximating a Finite Metric by a Small Number of Tree Metrics
 In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science
, 1998
"... Bartal [4, 5] gave a randomized polynomial time algorithm that given any n point metric G, constructs a tree T such that the expected stretch (distortion) of any edge is at most O(log n log log n). His result has found several applications and in particular has resulted in approximation algorithms f ..."
Abstract

Cited by 83 (10 self)
 Add to MetaCart
Bartal [4, 5] gave a randomized polynomial time algorithm that given any n point metric G, constructs a tree T such that the expected stretch (distortion) of any edge is at most O(log n log log n). His result has found several applications and in particular has resulted in approximation algorithms for many graph optimization problems. However approximation algorithms based on his