Results 1 
7 of
7
ExternalMemory Graph Algorithms
, 1995
"... We present a collection of new techniques for designing and analyzing efficient externalmemory algorithms for graph problems and illustrate how these techniques can be applied to a wide variety of specific problems. Our results include: ffl Proximateneighboring. We present a simple method for der ..."
Abstract

Cited by 175 (24 self)
 Add to MetaCart
We present a collection of new techniques for designing and analyzing efficient externalmemory algorithms for graph problems and illustrate how these techniques can be applied to a wide variety of specific problems. Our results include: ffl Proximateneighboring. We present a simple method for deriving externalmemory lower bounds via reductions from a problem we call the "proximate neighbors" problem. We use this technique to derive nontrivial lower bounds for such problems as list ranking, expression tree evaluation, and connected components. ffl PRAM simulation. We give methods for efficiently simulating PRAM computations in external memory, even for some cases in which the PRAM algorithm is not workoptimal. We apply this to derive a number of optimal (and simple) externalmemory graph algorithms. ffl Timeforward processing. We present a general technique for evaluating circuits (or "circuitlike" computations) in external memory. We also use this in a deterministic list rank...
Efficient ExternalMemory Data Structures and Applications
, 1996
"... In this thesis we study the Input/Output (I/O) complexity of largescale problems arising e.g. in the areas of database systems, geographic information systems, VLSI design systems and computer graphics, and design I/Oefficient algorithms for them. A general theme in our work is to design I/Oeffic ..."
Abstract

Cited by 38 (12 self)
 Add to MetaCart
In this thesis we study the Input/Output (I/O) complexity of largescale problems arising e.g. in the areas of database systems, geographic information systems, VLSI design systems and computer graphics, and design I/Oefficient algorithms for them. A general theme in our work is to design I/Oefficient algorithms through the design of I/Oefficient data structures. One of our philosophies is to try to isolate all the I/O specific parts of an algorithm in the data structures, that is, to try to design I/O algorithms from internal memory algorithms by exchanging the data structures used in internal memory with their external memory counterparts. The results in the thesis include a technique for transforming an internal memory tree data structure into an external data structure which can be used in a batched dynamic setting, that is, a setting where we for example do not require that the result of a search operation is returned immediately. Using this technique we develop batched dynamic external versions of the (onedimensional) rangetree and the segmenttree and we develop an external priority queue. Following our general philosophy we show how these structures can be used in standard internal memory sorting algorithms
I/OEfficient Scientific Computation Using TPIE
 In Proceedings of the Goddard Conference on Mass Storage Systems and Technologies, NASA Conference Publication 3340, Volume II
, 1995
"... In recent years, I/Oefficient algorithms for a wide variety of problems have appeared in the literature. Thus far, however, systems specifically designed to assist programmers in implementing such algorithms have remained scarce. TPIE is a system designed to fill this void. It supports I/Oeff ..."
Abstract

Cited by 34 (10 self)
 Add to MetaCart
In recent years, I/Oefficient algorithms for a wide variety of problems have appeared in the literature. Thus far, however, systems specifically designed to assist programmers in implementing such algorithms have remained scarce. TPIE is a system designed to fill this void. It supports I/Oefficient paradigms for problems from a variety of domains, including computational geometry, graph algorithms, and scientific computation. The TPIE interface frees programmers from having to deal not only of explicit read and write calls, but also the complex memory management that must be performed for I/Oefficient computation.
ExternalMemory Algorithms with Applications in Geographic Information Systems
 Algorithmic Foundations of GIS
, 1997
"... In the design of algorithms for largescale applications it is essential to consider the problem of minimizing Input/Output (I/O) communication. Geographical information systems (GIS) are good examples of such largescale applications as they frequently handle huge amounts of spatial data. In this n ..."
Abstract

Cited by 27 (9 self)
 Add to MetaCart
In the design of algorithms for largescale applications it is essential to consider the problem of minimizing Input/Output (I/O) communication. Geographical information systems (GIS) are good examples of such largescale applications as they frequently handle huge amounts of spatial data. In this note we survey the recent developments in externalmemory algorithms with applications in GIS. First we discuss the AggarwalVitter I/Omodel and illustrate why normal internalmemory algorithms for even very simple problems can perform terribly in an I/Oenvironment. Then we describe the fundamental paradigms for designing I/Oefficient algorithms by using them to design efficient sorting algorithms. We then go on and survey externalmemory algorithms for computational geometry problems  with special emphasis on problems with applications in GIS  and techniques for designing such algorithms: Using the orthogonal line segment intersection problem we illustrate the distributionsweeping and ...
Experiments on the Practical I/O Efficiency of Geometric Algorithms: Distribution Sweep vs. Plane Sweep
, 1995
"... We present an extensive experimental study comparing the performance of four algorithms for the following orthogonal segment intersection problem: given a set of horizontal and vertical line segments in the plane, report all intersecting horizontalvertical pairs. The problem has important applicati ..."
Abstract

Cited by 26 (8 self)
 Add to MetaCart
We present an extensive experimental study comparing the performance of four algorithms for the following orthogonal segment intersection problem: given a set of horizontal and vertical line segments in the plane, report all intersecting horizontalvertical pairs. The problem has important applications in VLSI layout and graphics, which are largescale in nature. The algorithms under evaluation are distribution sweep and three variations of plane sweep. Distribution sweep is specifically designed for the situations in which the problem is too large to be solved in internal memory, and theoretically has optimal I/O cost. Plane sweep is a wellknown and powerful technique in computational geometry, and is optimal for this particular problem in terms of internal computation. The three variations of plane sweep differ by the sorting methods (external vs. internal sorting) used in the preprocessing phase and the dynamic data structures (B tree vs. 234 tree) used in the sweeping ...
Practical Delaunay triangulation algorithms for surface reconstruction and related problems
, 2003
"... ..."
Structures for External Memory
"... Data sets in large applications are often too massive to fit completely inside the computer's internal memory. The resulting input/output communication (or I/O) between fast internal memory and slower external memory (such as disks) can be a major performance bottleneck. Algorithms and Data Structur ..."
Abstract
 Add to MetaCart
Data sets in large applications are often too massive to fit completely inside the computer's internal memory. The resulting input/output communication (or I/O) between fast internal memory and slower external memory (such as disks) can be a major performance bottleneck. Algorithms and Data Structures for External Memory surveys the state of the art in the design and analysis of external memory (or EM) algorithms and data structures, where the goal is to exploit locality in order to reduce the I/O costs. A variety of EM paradigms are considered for solving batched and online problems efficiently in external memory. Algorithms and Data Structures for External Memory describes several useful paradigms for the design and implementation of efficient EM algorithms and data structures. The problem domains considered include sorting, permuting, FFT, scientific computing, computational geometry, graphs, databases, geographic information systems, and text and string processing. Algorithms and Data Structures for External Memory is an invaluable reference for anybody interested in, or conducting research in the design, analysis, and implementation of algorithms and data structures. This book is originally published as