Results 1  10
of
40
Pseudorandomness and averagecase complexity via uniform reductions
 In Proceedings of the 17th Annual IEEE Conference on Computational Complexity
, 2002
"... Abstract. Impagliazzo and Wigderson (36th FOCS, 1998) gave the first construction of pseudorandom generators from a uniform complexity assumption on EXP (namely EXP � = BPP). Unlike results in the nonuniform setting, their result does not provide a continuous tradeoff between worstcase hardness an ..."
Abstract

Cited by 54 (9 self)
 Add to MetaCart
Abstract. Impagliazzo and Wigderson (36th FOCS, 1998) gave the first construction of pseudorandom generators from a uniform complexity assumption on EXP (namely EXP � = BPP). Unlike results in the nonuniform setting, their result does not provide a continuous tradeoff between worstcase hardness and pseudorandomness, nor does it explicitly establish an averagecase hardness result. In this paper: ◦ We obtain an optimal worstcase to averagecase connection for EXP: if EXP � ⊆ BPTIME(t(n)), then EXP has problems that cannot be solved on a fraction 1/2 + 1/t ′ (n) of the inputs by BPTIME(t ′ (n)) algorithms, for t ′ = t Ω(1). ◦ We exhibit a PSPACEcomplete selfcorrectible and downward selfreducible problem. This slightly simplifies and strengthens the proof of Impagliazzo and Wigderson, which used a #Pcomplete problem with these properties. ◦ We argue that the results of Impagliazzo and Wigderson, and the ones in this paper, cannot be proved via “blackbox ” uniform reductions.
Pseudorandom Generators Hard for kDNF Resolution and Polynomial Calculus Resolution
, 2003
"... A pseudorandom generator G n : f0; 1g is hard for a propositional proof system P if (roughly speaking) P can not ef ciently prove the statement G n (x 1 ; : : : ; x n ) 6= b for any string b 2 . We present a function (m 2 ) generator which is hard for Res( log n); here Res(k) is the ..."
Abstract

Cited by 41 (4 self)
 Add to MetaCart
A pseudorandom generator G n : f0; 1g is hard for a propositional proof system P if (roughly speaking) P can not ef ciently prove the statement G n (x 1 ; : : : ; x n ) 6= b for any string b 2 . We present a function (m 2 ) generator which is hard for Res( log n); here Res(k) is the propositional proof system that extends Resolution by allowing kDNFs instead of clauses.
Power from Random Strings
 IN PROCEEDINGS OF THE 43RD IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE
, 2002
"... We show that sets consisting of strings of high Kolmogorov complexity provide examples of sets that are complete for several complexity classes under probabilistic and nonuniform reductions. These sets are provably not complete under the usual manyone reductions. Let ..."
Abstract

Cited by 36 (15 self)
 Add to MetaCart
We show that sets consisting of strings of high Kolmogorov complexity provide examples of sets that are complete for several complexity classes under probabilistic and nonuniform reductions. These sets are provably not complete under the usual manyone reductions. Let
Algebrization: A new barrier in complexity theory
 MIT Theory of Computing Colloquium
, 2007
"... Any proof of P � = NP will have to overcome two barriers: relativization and natural proofs. Yet over the last decade, we have seen circuit lower bounds (for example, that PP does not have linearsize circuits) that overcome both barriers simultaneously. So the question arises of whether there is a ..."
Abstract

Cited by 30 (2 self)
 Add to MetaCart
Any proof of P � = NP will have to overcome two barriers: relativization and natural proofs. Yet over the last decade, we have seen circuit lower bounds (for example, that PP does not have linearsize circuits) that overcome both barriers simultaneously. So the question arises of whether there is a third barrier to progress on the central questions in complexity theory. In this paper we present such a barrier, which we call algebraic relativization or algebrization. The idea is that, when we relativize some complexity class inclusion, we should give the simulating machine access not only to an oracle A, but also to a lowdegree extension of A over a finite field or ring. We systematically go through basic results and open problems in complexity theory to delineate the power of the new algebrization barrier. First, we show that all known nonrelativizing results based on arithmetization—both inclusions such as IP = PSPACE and MIP = NEXP, and separations such as MAEXP � ⊂ P/poly —do indeed algebrize. Second, we show that almost all of the major open problems—including P versus NP, P versus RP, and NEXP versus P/poly—will require nonalgebrizing techniques. In some cases algebrization seems to explain exactly why progress stopped where it did: for example, why we have superlinear circuit lower bounds for PromiseMA but not for NP. Our second set of results follows from lower bounds in a new model of algebraic query complexity, which we introduce in this paper and which is interesting in its own right. Some of our lower bounds use direct combinatorial and algebraic arguments, while others stem from a surprising connection between our model and communication complexity. Using this connection, we are also able to give an MAprotocol for the Inner Product function with O ( √ n log n) communication (essentially matching a lower bound of Klauck), as well as a communication complexity conjecture whose truth would imply NL � = NP. 1
Hardness hypotheses, derandomization, and circuit complexity
 In Proceedings of the 24th Conference on Foundations of Software Technology and Theoretical Computer Science
, 2004
"... Abstract We consider hypotheses about nondeterministic computation that have been studied in different contexts and shown to have interesting consequences: * The measure hypothesis: NP does not have pmeasure 0.* The pseudoNP hypothesis: there is an NP language that can be distinguished from anyDT ..."
Abstract

Cited by 18 (5 self)
 Add to MetaCart
Abstract We consider hypotheses about nondeterministic computation that have been studied in different contexts and shown to have interesting consequences: * The measure hypothesis: NP does not have pmeasure 0.* The pseudoNP hypothesis: there is an NP language that can be distinguished from anyDTIME(2 nffl) language by an NP refuter. * The NPmachine hypothesis: there is an NP machine accepting 0 * for which no 2n ffltime machine can find infinitely many accepting computations. We show that the NPmachine hypothesis is implied by each of the first two. Previously, norelationships were known among these three hypotheses. Moreover, we unify previous work by showing that several derandomizations and circuitsize lower bounds that are known to followfrom the first two hypotheses also follow from the NPmachine hypothesis. In particular, the NPmachine hypothesis becomes the weakest known uniform hardness hypothesis that derandomizesAM. We also consider UP versions of the above hypotheses as well as related immunity and scaled dimension hypotheses. 1 Introduction The following uniform hardness hypotheses are known to imply full derandomization of ArthurMerlin games (NP = AM): * The measure hypothesis: NP does not have pmeasure 0 [24].
When Worlds Collide: Derandomization, Lower Bounds, and Kolmogorov Complexity
 OF REDUCTIONS,IN“PROC.29THACM SYMPOSIUM ON THEORY OF COMPUTING
, 1997
"... This paper has the following goals:  To survey some of the recent developments in the field of derandomization.  To introduce a new notion of timebounded Kolmogorov complexity (KT), and show that it provides a useful tool for understanding advances in derandomization, and for putting vario ..."
Abstract

Cited by 18 (5 self)
 Add to MetaCart
This paper has the following goals:  To survey some of the recent developments in the field of derandomization.  To introduce a new notion of timebounded Kolmogorov complexity (KT), and show that it provides a useful tool for understanding advances in derandomization, and for putting various results in context.  To illustrate the usefulness of KT, by answering a question that has been posed in the literature, and  To pose some promising directions for future research.
Derandomization in cryptography
 SIAM J. Computing
"... Abstract. We give two applications of Nisan–Wigdersontype (“noncryptographic”) pseudorandom generators in cryptography. Specifically, assuming the existence of an appropriate NWtype generator, we construct: 1. A onemessage witnessindistinguishable proof system for every language in NP, based on ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
Abstract. We give two applications of Nisan–Wigdersontype (“noncryptographic”) pseudorandom generators in cryptography. Specifically, assuming the existence of an appropriate NWtype generator, we construct: 1. A onemessage witnessindistinguishable proof system for every language in NP, based on any trapdoor permutation. This proof system does not assume a shared random string or any setup assumption, so it is actually an “NP proof system.” 2. A noninteractive bit commitment scheme based on any oneway function. The specific NWtype generator we need is a hitting set generator fooling nondeterministic circuits. It is known how to construct such a generator if E = DTIME(2 O(n) ) has a function of nondeterministic circuit complexity 2 Ω(n) (Miltersen and Vinodchandran, FOCS ‘99). Our witnessindistinguishable proofs are obtained by using the NWtype generator to derandomize the ZAPs of Dwork and Naor (FOCS ‘00). To our knowledge, this is the first construction of an NP proof system achieving a secrecy property. Our commitment scheme is obtained by derandomizing the interactive commitment scheme of Naor (J. Cryptology, 1991). Previous constructions of noninteractive commitment schemes were only known under incomparable assumptions. 1
HardnessRandomness Tradeoffs for Bounded Depth Arithmetic Circuits
"... In this paper we show that lower bounds for bounded depth arithmetic circuits imply derandomization of polynomial identity testing for bounded depth arithmetic circuits. More formally, if there exists an explicit polynomial f(x1,..., xm) that cannot be computed by a depth d arithmetic circuit of sma ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
In this paper we show that lower bounds for bounded depth arithmetic circuits imply derandomization of polynomial identity testing for bounded depth arithmetic circuits. More formally, if there exists an explicit polynomial f(x1,..., xm) that cannot be computed by a depth d arithmetic circuit of small size then there exists an efficient deterministic algorithm to test whether a given depth d − 8 circuit is identically zero or not (assuming the individual degrees of the tested circuit are not too high). In particular, if we are guaranteed that the tested circuit computes a multilinear polynomial then we can perform the identity test efficiently. To the best of our knowledge this is the first hardnessrandomness tradeoff for bounded depth arithmetic circuits. The above results are obtained using the the arithmetic NisanWigderson generator of [KI04] together with a new theorem on bounded depth circuits, which is the main technical contribution of our work. This theorem deals with polynomial equations of the form P (x1,..., xn, y) ≡ 0 and shows that if P has a circuit of depth d and size s and if the polynomial f(x1,..., xn) satisfies P (x1,..., xn, f(x1,..., xn)) ≡ 0 then f has a circuit of depth d + 3 and size O(s · r + m r), where m is the total degree of f and r is the degree of y in P.
Hardness as randomness: A survey of universal derandomization
 in Proceedings of the International Congress of Mathematicians
, 2002
"... We survey recent developments in the study of probabilistic complexity classes. While the evidence seems to support the conjecture that probabilism can be deterministically simulated with relatively low overhead, i.e., that P = BPP, it also indicates that this may be a difficult question to resolve. ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
We survey recent developments in the study of probabilistic complexity classes. While the evidence seems to support the conjecture that probabilism can be deterministically simulated with relatively low overhead, i.e., that P = BPP, it also indicates that this may be a difficult question to resolve. In fact, proving that probalistic algorithms have nontrivial deterministic simulations is basically equivalent to proving circuit lower bounds, either in the algebraic or Boolean models.
Arithmetic Circuits: a survey of recent results and open questions
"... A large class of problems in symbolic computation can be expressed as the task of computing some polynomials; and arithmetic circuits form the most standard model for studying the complexity of such computations. This algebraic model of computation attracted a large amount of research in the last fi ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
A large class of problems in symbolic computation can be expressed as the task of computing some polynomials; and arithmetic circuits form the most standard model for studying the complexity of such computations. This algebraic model of computation attracted a large amount of research in the last five decades, partially due to its simplicity and elegance. Being a more structured model than Boolean circuits, one could hope that the fundamental problems of theoretical computer science, such as separating P from NP, will be easier to solve for arithmetic circuits. However, in spite of the appearing simplicity and the vast amount of mathematical tools available, no major breakthrough has been seen. In fact, all the fundamental questions are still open for this model as well. Nevertheless, there has been a lot of progress in the area and beautiful results have been found, some in the last few years. As examples we mention the connection between polynomial identity testing and lower bounds of Kabanets and Impagliazzo, the lower bounds of Raz for multilinear formulas, and two new approaches for proving lower bounds: Geometric Complexity Theory and Elusive Functions. The goal of this monograph is to survey the field of arithmetic circuit complexity, focusing mainly on what we find to be the most interesting and accessible research directions. We aim to cover the main results and techniques, with an emphasis on works from the last two decades. In particular, we